Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 858
Filtrar
1.
Redox Biol ; 74: 103229, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38870781

RESUMO

BACKGROUND: Nuclear erythroid 2-related factor 2 (Nrf2), a transcription factor, is critically involved in the regulation of oxidative stress and inflammation. However, the role of endothelial Nrf2 in atherogenesis has yet to be defined. In addition, how endothelial Nrf2 is activated and whether Nrf2 can be targeted for the prevention and treatment of atherosclerosis is not explored. METHODS: RNA-sequencing and single-cell RNA sequencing analysis of mouse atherosclerotic aortas were used to identify the differentially expressed genes. In vivo endothelial cell (EC)-specific activation of Nrf2 was achieved by injecting adeno-associated viruses into ApoE-/- mice, while EC-specific knockdown of Nrf2 was generated in Cdh5CreCas9floxed-stopApoE-/- mice. RESULTS: Endothelial inflammation appeared as early as on day 3 after feeding of a high cholesterol diet (HCD) in ApoE-/- mice, as reflected by mRNA levels, immunostaining and global mRNA profiling, while the immunosignal of the end-product of lipid peroxidation (LPO), 4-hydroxynonenal (4-HNE), started to increase on day 10. TNF-α, 4-HNE, and erastin (LPO inducer), activated Nrf2 signaling in human ECs by increasing the mRNA and protein expression of Nrf2 target genes. Knockdown of endothelial Nrf2 resulted in augmented endothelial inflammation and LPO, and accelerated atherosclerosis in Cdh5CreCas9floxed-stopApoE-/- mice. By contrast, both EC-specific and pharmacological activation of Nrf2 inhibited endothelial inflammation, LPO, and atherogenesis. CONCLUSIONS: Upon HCD feeding in ApoE-/- mice, endothelial inflammation is an earliest event, followed by the appearance of LPO. EC-specific activation of Nrf2 inhibits atherosclerosis while EC-specific knockdown of Nrf2 results in the opposite effect. Pharmacological activators of endothelial Nrf2 may represent a novel therapeutic strategy for the treatment of atherosclerosis.


Assuntos
Apolipoproteínas E , Aterosclerose , Células Endoteliais , Inflamação , Peroxidação de Lipídeos , Fator 2 Relacionado a NF-E2 , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Aterosclerose/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Camundongos , Apolipoproteínas E/genética , Apolipoproteínas E/deficiência , Apolipoproteínas E/metabolismo , Células Endoteliais/metabolismo , Inflamação/metabolismo , Inflamação/genética , Humanos , Estresse Oxidativo , Camundongos Knockout , Modelos Animais de Doenças , Masculino
2.
J Pharm Pharmacol ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934298

RESUMO

OBJECTIVES: The aim of this study was to investigate the therapeutic effects and related mechanisms of Tanshinone IIA and Tetramethylpyrazine O/W composite nanoemulsions on Alzheimer's disease (AD) rats. METHODS: The therapeutic effect of TSN/TMP O/W NEs on AD rats was evaluated by behavioral tests, H&E, Nissl, and Immunohistochemistry staining. ELISA and Western blot were used to analyze the mechanism. KEY FINDINGS: The results showed that TSN/TMP O/W NEs could down-regulate the expression of Bax and Caspase-3 proteins, decrease the level of MDA, increase the expression of SOD and GSH-Px, and alleviate cognitive impairment in AD rats. CONCLUSIONS: TSN/TMP O/W NEs can inhibit MAPK/ERK/CREB signaling pathway and effectively alleviate cognitive impairment, oxidative stress injury, and neuronal apoptosis in AD rats.

3.
Infection ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38848016

RESUMO

PURPOSE: The COVID-19 pandemic has altered the infection dynamics of numerous pathogens. This study aimed to elucidate its impact on Streptococcus pneumoniae (S. pneumoniae) infections in children with community acquired pneumonia (CAP). METHODS: A retrospective analysis was conducted in pediatric CAP patients admitted before (2018-2019) and during (2020-2022) the COVID-19 pandemic. The epidemiology and antimicrobial resistance (AMR) patterns of S. pneumoniae were compared to reveal the impact of the pandemic. RESULTS: A total of 968 S. pneumoniae-associated pediatric CAP patients were enrolled. Although the positivity rate and gender of patients were stable across both periods, the age notably increased in 2021 and 2022. Additionally, significant changes were observed in the co-infections with several pathogens and the resistance rates to certain antibiotics during the COVID-19 pandemic. The resistance rate to clindamycin and quinupristin-dalfopristin increased, whereas the resistance rate to tetracycline, trimethoprim-sulfamethoxazole, telithromycin, and proportion of multi-drug resistant isolates decreased. The number of S. pneumoniae strains and resistant isolates exhibited similar seasonal patterns in 2018 and 2019, peaking in November or December with another minor peak in March or April. During the COVID-19 pandemic, there was a sharp decrease in February 2020 and no resurgence was observed at the end of 2022. Additionally, the minor peak was absent in 2020 and shifted to other months in 2021 and 2022. CONCLUSIONS: The COVID-19 pandemic has markedly altered the infection spectrum of S. pneumoniae in pediatric CAP patients, as evidenced by shifts in the age of patients, respiratory co-infections, AMR patterns, and seasonal trends.

4.
Pediatr Hematol Oncol ; : 1-10, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867542

RESUMO

Patients with newly diagnosed hematological malignancies often present with a considerable cellular burden, leading to complications including hyperkalemia. However, pseudohyperkalemia, arising from in vitro cell lysis, can pose challenges in clinical practice. Although pseudohyperkalemia is frequently reported in adult hematological malignancies, its occurrence in pediatric patients is underreported, and its incidence in this demographic remains unclear. We retrospectively reviewed the medical records of pediatric patients who received a new diagnosis of hematological malignancies from 2011 to 2022 at Taichung Veterans General Hospital. Hyperkalemia was defined by a serum or plasma potassium level exceeding 5.5 mEq/L. Pseudohyperkalemia was defined by 1) a potassium decrease of over 1 mEq/L in within 4 h without intervention or 2) the absence of electrocardiography changes indicative of hyperkalemia. Cases with apparent red blood cell hemolysis were excluded. A total of 157 pediatric patients with a new diagnosis of hematological malignancies were included, 14 of whom exhibited hyperkalemia. Among these 14 cases, 7 cases (4.5%) were of pseudohyperkalemia. This rate increased to 21.2% in patients with initial hyperleukocytosis. Pseudohyperkalemia was associated with a higher initial white blood cell count and lower serum sodium level. All episodes of pseudohyperkalemia occurred in the pediatric emergency department, where samples were obtained as plasma, whereas all true hyperkalemia cases were observed in the ordinary ward or intensive care unit, where samples were obtained as serum. Timely recognition of pseudohyperkalemia is crucial to avoiding unnecessary potassium-lowering interventions in pediatric patients with newly diagnosed hematological malignancies.

5.
Sci Rep ; 14(1): 12737, 2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830922

RESUMO

The COVID-19 pandemic has altered the infection landscape for many pathogens. This retrospective study aimed to compare Haemophilus influenzae (H. influenzae) infections in pediatric CAP patients hospitalized before (2018-2019) and during (2020-2022) the COVID-19 pandemic. We analyzed the clinical epidemiology and antimicrobial resistance (AMR) patterns of H. influenzae from a tertiary hospital in southwest China. A total of 986 pediatric CAP patients with H. influenzae-associated infections were included. Compared to 2018, the positivity rate increased in 2019 but dropped significantly in 2020. Although it rose in the following 2 years, the rate in 2022 remained significantly lower than in 2019. Patients' age during the pandemic was significantly higher than in 2018 and 2019, while gender composition remained similar across both periods. Notably, there were significant changes in co-infections with several respiratory pathogens during the pandemic. Resistance rates of H. influenzae isolates to antibiotics varied, with the highest resistance observed for ampicillin (85.9%) and the lowest for cefotaxime (0.0%). Resistance profiles to various antibiotics underwent dramatic changes during the COVID-19 pandemic. Resistance to amoxicillin-clavulanate, cefaclor, cefuroxime, trimethoprim-sulfamethoxazole, and the proportion of multi-drug resistant (MDR) isolates significantly decreased. Additionally, MDR isolates, alongside isolates resistant to specific drugs, were notably prevalent in ampicillin-resistant and ß-lactamase-positive isolates. The number of pediatric CAP patients, H. influenzae infections, and isolates resistant to certain antibiotics exhibited seasonal patterns, peaking in the winter of 2018 and 2019. During the COVID-19 pandemic, sharp decreases were observed in February 2020, and there was no resurgence in December 2022. These findings indicate that the COVID-19 pandemic has significantly altered the infection spectrum of H. influenzae in pediatric CAP patients, as evidenced by shifts in positivity rate, demographic characteristics, respiratory co-infections, AMR patterns, and seasonal trends.


Assuntos
Antibacterianos , COVID-19 , Infecções Comunitárias Adquiridas , Infecções por Haemophilus , Haemophilus influenzae , Humanos , COVID-19/epidemiologia , COVID-19/complicações , Masculino , Feminino , Haemophilus influenzae/efeitos dos fármacos , Haemophilus influenzae/isolamento & purificação , Criança , Pré-Escolar , Infecções por Haemophilus/epidemiologia , Infecções por Haemophilus/tratamento farmacológico , Infecções por Haemophilus/microbiologia , Estudos Retrospectivos , Infecções Comunitárias Adquiridas/epidemiologia , Infecções Comunitárias Adquiridas/tratamento farmacológico , Infecções Comunitárias Adquiridas/microbiologia , Lactente , China/epidemiologia , Antibacterianos/uso terapêutico , Hospitalização , Adolescente , Pandemias , Coinfecção/epidemiologia , Coinfecção/tratamento farmacológico , Coinfecção/microbiologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/efeitos dos fármacos , Farmacorresistência Bacteriana
6.
Int J Pharm ; 659: 124284, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38810934

RESUMO

The study aimed to create a low loading, high retention, easier to apply O/W mometasone furoate (MF) cream using a chemical enhancer (CE) approach to provide more options for patients with atopic dermatitis (AD) and to investigate molecular mechanisms of its increased release and retention. A Box-Behnken design determined the optimal formulation based on stability and in vitro skin retention. Evaluations included appearance, rheological properties, irritation, in vivo tissue distribution and pharmacodynamics. Molecular mechanisms of enhanced release were studied using high-speed centrifugation, molecular dynamics and rheology. The interaction between the CE, MF and skin was studied by tape stripping, CLSM, ATR-FTIR and SAXS. The formulation was optimized to contain 0.05% MF and used 10% polyglyceryl-3 oleate (POCC) as the CE. There was no significant difference from Elocon® cream in in vivo retention and pharmacodynamics but increased in vivo retention by 3.14-fold and in vitro release by 1.77-fold compared to the basic formulation. POCC reduced oil phase cohesive energy density, enhancing drug mobility and release. It disrupted skin lipid phases, aiding drug entry and formed hydrogen bonds, prolonging retention. This study highlights POCC as a CE in the cream, offering insights for semi-solid formulation development.


Assuntos
Liberação Controlada de Fármacos , Furoato de Mometasona , Creme para a Pele , Pele , Furoato de Mometasona/administração & dosagem , Furoato de Mometasona/farmacocinética , Furoato de Mometasona/química , Animais , Creme para a Pele/administração & dosagem , Creme para a Pele/química , Pele/metabolismo , Pele/efeitos dos fármacos , Administração Cutânea , Masculino , Absorção Cutânea/efeitos dos fármacos , Química Farmacêutica/métodos , Glicerol/química , Glicerol/análogos & derivados , Dermatite Atópica/tratamento farmacológico , Feminino , Excipientes/química , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/farmacocinética , Composição de Medicamentos/métodos , Ácido Oleico/química , Polímeros/química
7.
Angew Chem Int Ed Engl ; : e202407518, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38752452

RESUMO

Gold nanoclusters exhibiting concomitant photothermy (PT) and photoluminescence (PL) under near-infrared (NIR) light irradiation are rarely reported, and some fundamental issues remain unresolved for such materials. Herein, we concurrently synthesized two novel rod-shaped Au nanoclusters, Au52(PET)32 and Au66(PET)38 (PET = 2-phenylethanethiol), and precisely revealed that their kernels were 4 × 4 × 6 and 5 × 4 × 6 face-centered cubic (fcc) structures, respectively, based on the numbers of Au layers in the [100], [010], and [001] directions. Following the structural growth mode from Au52(PET)32 to Au66(PET)38, we predicted six more novel nanoclusters. The concurrent synthesis provides rational comparison of the two nanoclusters on the stability, absorption, emission and photothermy, and reveals the aspect ratio-related properties. An interesting finding is that the two nanoclusters exhibit concomitant PT and PL under 785 nm light irradiation, and the PT and PL are in balance, which was explained by the qualitative evaluation of the radiative and non-radiative rates. The ligand effects on PT and PL were also investigated.

8.
Heliyon ; 10(10): e31339, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813151

RESUMO

Lead-acid batteries are noted for simple maintenance, long lifespan, stable quality, and high reliability, widely used in the field of energy storage. However, during the use of lead-acid batteries, the negative electrode is prone to irreversible sulfation, failing to meet the requirements of new applications such as maintenance-free hybrid vehicles and solar energy storage. In this study, in order to overcome the sulfation problem and improve the cycle life of lead-acid batteries, active carbon (AC) was selected as a foaming agent and foam fixing agent, and carbon foams (CF) with layered porous structure was prepared by mixing with molten sucrose. Sucrose as raw material is green and cheap, and the material preparation process is simple. The prepared CF material was then added as an additive to the negative electrode plate, and the electrochemical performance of the electrode plate and the battery was studied. The results proved that the addition of CF could effectively inhibit the sulfate formation of the negative electrode plate, with the 1.0 % CF negative electrode plate showing the best electrochemical performance. Specifically, according to the result of battery cycle testing, the simulated battery with CF had a cycle life of 3642 times, which was 2.87 times that of the blank group and 2.39 times of the AC group. Meanwhile, rate testing showed that the simulated battery with CF could maintain a high capacity even under high-rate discharge conditions.

9.
Virulence ; 15(1): 2356692, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38797966

RESUMO

The increasing antibiotic resistance poses a significant global health challenge, threatening our ability to combat infectious diseases. The phenomenon of collateral sensitivity, whereby resistance to one antibiotic is accompanied by increased sensitivity to another, offers potential avenues for novel therapeutic interventions against infections unresponsive to classical treatments. In this study, we elucidate the emergence of tobramycin (TOB)-resistant small colony variants (SCVs) due to mutations in the hemL gene, which render S. Typhimurium more susceptible to nitrofurantoin (NIT). Mechanistic studies demonstrate that the collateral sensitivity in TOB-resistant S. Typhimurium SCVs primarily stems from disruptions in haem biosynthesis. This leads to dysfunction in the electron transport chain (ETC) and redox imbalance, ultimately inducing lethal accumulation of reactive oxygen species (ROS). Additionally, the upregulation of nfsA/B expressions facilitates the conversion of NIT prodrug into its active form, promoting ROS-mediated bacterial killing and contributing to this collateral sensitivity pattern. Importantly, alternative NIT therapy demonstrates a significant reduction of bacterial load by more than 2.24-log10 cfu/g in the murine thigh infection and colitis models. Our findings corroborate the collateral sensitivity of S. Typhimurium to nitrofurans as a consequence of evolving resistance to aminoglycosides. This provides a promising approach for treating infections due to aminoglycoside-resistant strains.


Assuntos
Antibacterianos , Nitrofurantoína , Salmonella typhimurium , Tobramicina , Nitrofurantoína/farmacologia , Animais , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Tobramicina/farmacologia , Camundongos , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/genética , Mutação , Feminino , Espécies Reativas de Oxigênio/metabolismo , Infecções por Salmonella/microbiologia , Infecções por Salmonella/tratamento farmacológico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
11.
mSystems ; 9(6): e0116423, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38747582

RESUMO

Salmonella 4,[5],12:i:-, a monophasic variant of Salmonella Typhimurium, has emerged as a global cause of multidrug-resistant salmonellosis and has become endemic in many developing and developed countries, especially in China. Here, we have sequenced 352 clinical isolates in Guangdong, China, during 2009-2019 and performed a large-scale collection of Salmonella 4,[5],12:i:- with whole genome sequencing (WGS) data across the globe, to better understand the population structure, antimicrobial resistance (AMR) genomic characterization, and transmission routes of Salmonella 4,[5],12:i:- across Guangdong. Salmonella 4,[5],12:i:- strains showed broad genetic diversity; Guangdong isolates were found to be widely distributed among the global lineages. Of note, we identified the formation of a novel Guangdong clade (Bayesian analysis of population structure lineage 1 [BAPS1]) genetically diversified from the global isolates and likely emerged around 1990s. BAPS1 exhibits unique genomic features, including large pan-genome, decreased ciprofloxacin susceptibility due to mutation in gyrA and carriage of plasmid-mediated quinolone resistance (PMQR) genes, and the multidrug-resistant IncHI2 plasmid. Furthermore, high genetic similarity was found between strains collected from Guangdong, Europe, and North America, indicating the association with multiple introductions from overseas. These results suggested that global dissemination and local clonal expansion simultaneously occurred in Guangdong, China, and horizontally acquired resistance to first-line and last-line antimicrobials at local level, underlying emergences of extensive drug and pan-drug resistance. Our findings have increased the knowledge of global and local epidemics of Salmonella 4,[5],12:i:- in Guangdong, China, and provided a comprehensive baseline data set essential for future molecular surveillance.IMPORTANCESalmonella 4,[5],12:i:- has been regarded as the predominant pandemic serotype causing diarrheal diseases globally, while multidrug resistance (MDR) constitutes great public health concerns. This study provided a detailed and comprehensive genome-scale analysis of this important Salmonella serovar in the past decade in Guangdong, China. Our results revealed the complexity of two distinct transmission modes, namely global transmission and local expansion, circulating in Guangdong over a decade. Using phylogeography models, the origin of Salmonella 4,[5],12:i:- was predicted from two aspects, year and country, that is, Salmonella 4,[5],12:i:- emerged in 1983, and was introduced from the UK, and subsequently differentiated into the local endemic lineage circa 1991. Additionally, based on the pan-genome analysis, it was found that the gene accumulation rate in local endemic BAPS 1 lineage was higher than in other lineages, and the horizontal transmission of MDR IncHI2 plasmid associated with high resistance played a major role, which showed the potential threat to public health.


Assuntos
Farmacorresistência Bacteriana Múltipla , Infecções por Salmonella , Sequenciamento Completo do Genoma , China/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Infecções por Salmonella/microbiologia , Infecções por Salmonella/epidemiologia , Infecções por Salmonella/transmissão , Infecções por Salmonella/tratamento farmacológico , Antibacterianos/farmacologia , Genoma Bacteriano/genética , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Testes de Sensibilidade Microbiana , Filogenia , Genômica , Plasmídeos/genética
12.
Nanoscale ; 16(22): 10597-10606, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38758161

RESUMO

Tribocatalysis is a method that converts mechanical energy into chemical energy. In this study, we synthesized tungsten bronze structured Ba0.75Sr0.25Nb1.9Ta0.1O6 ferroelectric ceramic submicron powder using a traditional solid-state route, and the powder exhibited excellent performance in tribocatalytic water splitting for hydrogen production. Under the friction stirring of three polytetrafluoroethylene (PTFE) magnetic stirring bars in pure water, the rate of hydrogen generation by the Ba0.75Sr0.25Nb1.9Ta0.1O6 ferroelectric submicron powder is 200 µmol h-1 g-1, and after 72 hours, the accumulated hydrogen production reaches 15 892.8 µmol g-1. Additionally, this ferroelectric tungsten bronze ferroelectric material also exhibits excellent tribocatalytic degradation ability toward RhB dyes, with degradation efficiency reaching 96% in 2 hours. The study of tribocatalysis based on tungsten bronze ferroelectric materials represents a significant step forward in versatile energy utilization for clean energy and environmental wastewater degradation.

13.
Bioorg Chem ; 148: 107463, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38776649

RESUMO

Thrombosis leads to elevated mortality rates and substantial medical expenses worldwide. Human factor IXa (HFIXa) protease is pivotal in tissue factor (TF)-mediated thrombin generation, and represents a promising target for anticoagulant therapy. We herein isolated novel DNA aptamers that specifically bind to HFIXa through systematic evolution of ligands by exponential enrichment (SELEX) method. We identified two distinct aptamers, seq 5 and seq 11, which demonstrated high binding affinity to HFIXa (Kd = 74.07 ± 2.53 nM, and 4.93 ± 0.15 nM, respectively). Computer software was used for conformational simulation and kinetic analysis of DNA aptamers and HFIXa binding. These aptamers dose-dependently prolonged activated partial thromboplastin time (aPTT) in plasma. We further rationally optimized the aptamers by truncation and site-directed mutation, and generated the truncated forms (Seq 5-1t, Seq 11-1t) and truncated-mutated forms (Seq 5-2tm, Seq 11-2tm). They also showed good anticoagulant effects. The rationally and structurally designed antidotes (seq 5-2b and seq 11-2b) were competitively bound to the DNA aptamers and effectively reversed the anticoagulant effect. This strategy provides DNA aptamer drug-antidote pair with effective anticoagulation and rapid reversal, developing advanced therapies by safe, regulatable aptamer drug-antidote pair.


Assuntos
Antídotos , Aptâmeros de Nucleotídeos , Fator IXa , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/farmacologia , Humanos , Fator IXa/antagonistas & inibidores , Fator IXa/metabolismo , Antídotos/farmacologia , Antídotos/química , Antídotos/síntese química , Relação Dose-Resposta a Droga , Anticoagulantes/farmacologia , Anticoagulantes/química , Relação Estrutura-Atividade , Estrutura Molecular , Técnica de Seleção de Aptâmeros
14.
Eur J Clin Microbiol Infect Dis ; 43(6): 1213-1220, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38613707

RESUMO

PURPOSE: The COVID-19 pandemic has notably altered the infection dynamics of various pathogens. This study aimed to evaluate the pandemic's impact on the infection spectrum of Mycoplasma pneumoniae (M. pneumoniae) among children with community acquired pneumonia (CAP). METHODS: We enrolled pediatric CAP patients admitted to a tertiary hospital in southwest China to compare the prevalence and characteristics of M. pneumoniae infections before (2018-2019) and during (2020-2022) the COVID-19 pandemic. Detection of M. pneumoniae IgM antibodies in serum were conducted using either indirect immunofluorescence or passive agglutination methods. RESULTS: The study included 1505 M. pneumoniae-positive and 3160 M. pneumoniae-negative CAP patients. Notable findings were the higher age and frequency of pneumonia-associated symptoms in M. pneumoniae-positive patients, alongside a lower male proportion and fewer respiratory co-infections. The year 2019 saw a notable increase in M. pneumoniae infections compared to 2018, followed by a decline from 2020 to 2022. The COVID-19 pandemic period witnessed significant alterations in age distribution, male proportion, and co-infections with specific pathogens in both M. pneumoniae-positive and negative patients. The M. pneumoniae infections were predominantly seasonal, peaking in autumn and winter during 2018 and 2019. Although there was a sharp drop in February 2020, the infection still peaked in cold months of 2020 and 2021. However, the typical seasonal pattern was nearly absent in 2022. CONCLUSIONS: The COVID-19 pandemic has markedly changed the infection landscape of M. pneumoniae in pediatric CAP patients, with shifts observed in infection rates, demographic profiles, co-infections, and seasonal patterns.


Assuntos
COVID-19 , Infecções Comunitárias Adquiridas , Mycoplasma pneumoniae , Pneumonia por Mycoplasma , Centros de Atenção Terciária , Humanos , Infecções Comunitárias Adquiridas/epidemiologia , Infecções Comunitárias Adquiridas/microbiologia , China/epidemiologia , Masculino , Pneumonia por Mycoplasma/epidemiologia , Feminino , COVID-19/epidemiologia , Criança , Centros de Atenção Terciária/estatística & dados numéricos , Estudos Retrospectivos , Pré-Escolar , Mycoplasma pneumoniae/imunologia , Lactente , Coinfecção/epidemiologia , Coinfecção/microbiologia , Coinfecção/virologia , Adolescente , SARS-CoV-2 , Prevalência , Imunoglobulina M/sangue , Hospitalização
15.
Acta Biomater ; 181: 133-145, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38641185

RESUMO

In transdermal drug delivery system (TDDS) patches, achieving prolonged adhesion, high drug loading, and rapid drug release simultaneously presented a significant challenge. In this study, a PHT-SP-Cu2+ adhesive was synthesized using polyethylene glycol (PEG), hexamethylene diisocyanate (HDI), trimethylolpropane (TMP), and silk protein (SP) as functional monomers which were combined with Cu2+ to improve the adhesion, drug loading, and drug release of the patch. The structure of the adhesion chains and the formation of Cu2+-p-π conjugated network in PHT-SP-Cu2+ were characterized and elucidated using different characterization methods including FT-IR, 13C NMR, XPS, SEM imaging and thermodynamic evaluation. The formulation of pressure-sensitive adhesive (PSA) was optimized through comprehensive research on adhesion, mechanics, rheology, and surface energy. The formulation of 3 wt.% SP and 3 wt.% Cu2+ provided superior adhesion properties compared to commercial standards. Subsequently, the peel strength of PHT-SP-Cu2+ was 7.6 times higher than that of the commercially available adhesive DURO-TAK® 87-4098 in the porcine skin peel test. The adhesion test on human skin confirmed that PHT-SP-Cu2+ could adhere to the human body for more than six days. Moreover, the drug loading, in vitro release test and skin permeation test were investigated using ketoprofen as a model drug, and the results showed that PHT-SP-Cu2+ had the efficacy of improving drug compatibility, promoting drug release and enhancing skin permeation as a TDDS. Among them, the drug loading of PHT-SP-Cu2+ was increased by 6.25-fold compared with PHT, and in the in vivo pharmacokinetic analysis, the AUC was similarly increased by 19.22-fold. The mechanism of α-helix facilitated drug release was demonstrated by Flori-Hawkins interaction parameters, molecular dynamics simulations and FT-IR. Biosafety evaluations highlighted the superior skin cytocompatibility and safety of PHT-SP-Cu2+ for transdermal applications. These results would contribute to the development of TDDS patch adhesives with outstanding adhesion, drug loading and release efficiency. STATEMENT OF SIGNIFICANCE: A new adhesive, PHT-SP-Cu2+, was created for transdermal drug delivery patches. Polyethylene glycol, hexamethylene diisocyanate, trimethylolpropane, silk protein, and Cu2+ were used in synthesis. Characterization techniques confirmed the structure and Cu2+-p-π conjugated networks. Optimal formulation included 3 wt.% SP and 3 wt.% Cu2+, exhibiting superior adhesion. PHT-SP-Cu2+ showed 7.6 times higher peel strength than DURO-TAK® 87-4098 on porcine skin and adhered to human skin for over six days. It demonstrated a 6.25-fold increase in drug loading compared to PHT, with 19.22-fold higher AUC in vivo studies. α-helix facilitated drug release, proven by various analyses. PHT-SP-Cu2+ showed excellent cytocompatibility and safety for transdermal applications. This study contributes to developing efficient TDDS patches.


Assuntos
Administração Cutânea , Liberação Controlada de Fármacos , Seda , Adesivos Teciduais , Animais , Adesivos Teciduais/química , Adesivos Teciduais/farmacologia , Humanos , Seda/química , Sistemas de Liberação de Medicamentos , Suínos , Pele/metabolismo , Pele/efeitos dos fármacos , Adesivo Transdérmico , Cobre/química , Cobre/farmacocinética
16.
Commun Biol ; 7(1): 474, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637717

RESUMO

Coding transcript-derived siRNAs (ct-siRNAs) produced from specific endogenous loci can suppress the translation of their source genes to balance plant growth and stress response. In this study, we generated Arabidopsis mutants with deficiencies in RNA decay and/or post-transcriptional gene silencing (PTGS) pathways and performed comparative sRNA-seq analysis, revealing that multiple RNA decay and PTGS factors impede the ct-siRNA selective production. Genes that produce ct-siRNAs often show increased or unchanged expression and typically have higher GC content in sequence composition. The growth and development of plants can perturb the dynamic accumulation of ct-siRNAs from different gene loci. Two nitrate reductase genes, NIA1 and NIA2, produce massive amounts of 22-nt ct-siRNAs and are highly expressed in a subtype of mesophyll cells where DCL2 exhibits higher expression relative to DCL4, suggesting a potential role of cell-specific expression of ct-siRNAs. Overall, our findings unveil the multifaceted factors and features involved in the selective production and regulation of ct-siRNAs and enrich our understanding of gene silencing process in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Arabidopsis/metabolismo , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , Plantas/metabolismo
17.
Angew Chem Int Ed Engl ; 63(25): e202402565, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38588114

RESUMO

Atomically precise ~1-nm Pt nanoparticles (nanoclusters, NCs) with ambient stability are important in fundamental research and exhibit diverse practical applications (catalysis, biomedicine, etc.). However, synthesizing such materials is challenging. Herein, by employing the mixture ligand protecting strategy, we successfully synthesized the largest organic-ligand-protected (~1-nm) Pt23 NCs precisely characterized with mass spectrometry and single-crystal X-ray diffraction analyses. Interestingly, natural population analysis and Bader charge calculation indicate an alternate, varying charge -layer distribution in the sandwich-like Pt23 NC kernel. Pt23 NCs can catalyze the oxygen reduction reaction under acidic conditions without requiring calcination and other treatments, and the resulting specific and mass activities without further treatment are sevenfold and eightfold higher than those observed for commercial Pt/C catalysts, respectively. Density functional theory and d-band center calculations interpret the high activity. Furthermore, Pt23 NCs exhibit a photothermal conversion efficiency of 68.4 % under 532-nm laser irradiation and can be used at least for six cycles, thus demonstrating great potential for practical applications.

18.
J Leukoc Biol ; 116(1): 103-117, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38660893

RESUMO

It has been found that CD226 plays an important role in regulating macrophage function, but its expression and function in macrophages during renal fibrogenesis have not been studied. Our data demonstrated that CD226 expression in macrophages was obviously upregulated in the unilateral ureteral obstruction model, while CD226 deficiency attenuated collagen deposition in renal interstitium along with fewer M1 within renal cortex and renal medulla and a lower level of proinflammatory factors compared to that of control littermates. Further studies demonstrated that Cd226-/- bone marrow-derived macrophages transferring could significantly reduce the tubular injury, collagen deposition, and proinflammatory cytokine secretion compared with that of Cd226+/+ bone marrow-derived macrophages transferring in the unilateral ureteral obstruction model. Mechanistic investigations revealed that CD226 promoted proinflammatory M1 macrophage accumulation in the kidney via suppressing KLF4 expression in macrophages. Therefore, our results uncovered a pathogenic role of CD226 during the development of chronic kidney disease by promoting monocyte infiltration from peripheral blood into the kidney and enhancing macrophage activation toward the inflammatory phenotype by suppressing KLF4 expression.


Assuntos
Antígenos de Diferenciação de Linfócitos T , Movimento Celular , Fibrose , Fator 4 Semelhante a Kruppel , Ativação de Macrófagos , Macrófagos , Animais , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Antígenos de Diferenciação de Linfócitos T/metabolismo , Camundongos Endogâmicos C57BL , Rim/patologia , Rim/metabolismo , Rim/imunologia , Masculino , Obstrução Ureteral/patologia , Camundongos Knockout , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo
19.
Phys Rev Lett ; 132(7): 073802, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38427883

RESUMO

The exotic physics associated with exceptional points (EPs) is always under the scrutiny of theoretical and experimental science. Recently, considerable effort has been invested in the combination of nonlinearity and non-Hermiticity. The concept of nonlinear EPs (NEPs) has been introduced, which can avoid the loss of completeness of the eigenbasis in dynamics while retaining the key features of linear EPs. Here, we present the first direct experimental demonstration of a NEP based on two non-Hermition coupled circuit resonators combined with a nonlinear saturable gain. At the NEP, the response of the eigenfrequency to perturbations demonstrates a third-order root law and the eigenbasis of the Hamiltonian governing the system dynamics is still complete. Our results bring this counterintuitive aspect of the NEP to light and possibly open new avenues for applications.

20.
Br J Haematol ; 204(4): 1344-1353, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479427

RESUMO

This study investigates the potential utility of IKZF1 deletion as an additional high-risk marker for paediatric acute lymphoblastic leukaemia (ALL). The prognostic impact of IKZF1 status, in conjunction with minimal/measurable residual disease (MRD), was evaluated within the MRD-guided TPOG-ALL-2013 protocol using 412 newly diagnosed B-ALL patients aged 1-18. IKZF1 status was determined using multiplex ligation-dependent probe amplification. IKZF1 deletions, when co-occurring with CDKN2A, CDKN2B, PAX5 or PAR1 region deletions in the absence of ERG deletions, were termed IKZF1plus. Both IKZF1 deletion (14.6%) and IKZF1plus (7.8%) independently predicted poorer outcomes in B-ALL. IKZF1plus was observed in 4.1% of Philadelphia-negative ALL, with a significantly lower 5-year event-free survival (53.9%) compared to IKZF1 deletion alone (83.8%) and wild-type IKZF1 (91.3%) (p < 0.0001). Among patients with Day 15 MRD ≥0.01%, provisional high-risk patients with IKZF1plus exhibited the worst outcomes in event-free survival (42.0%), relapse-free survival (48.0%) and overall survival (72.7%) compared to other groups (p < 0.0001). Integration of IKZF1plus and positive Day 15 MRD identified a subgroup of Philadelphia-negative B-ALL with a 50% risk of relapse. This study highlights the importance of assessing IKZF1plus alongside Day 15 MRD positivity to identify patients at increased risk of adverse outcomes, potentially minimizing overtreatment.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Deleção de Genes , Fator de Transcrição Ikaros/genética , Recidiva Local de Neoplasia , Neoplasia Residual/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Prognóstico , Medição de Risco , Fatores de Transcrição , Lactente , Pré-Escolar , Adolescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...