Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Adv Biol (Weinh) ; : e2400145, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007414

RESUMO

Axons have intrinsically poor regenerative capacity in the mature central nervous system (CNS), leading to permanent neurological impairments in individuals. There is growing evidence that exercise is a powerful physiological intervention that can obviously enhance cell rejuvenate capacity, but its molecular mechanisms that mediate the axonal regenerative benefits remain largely unclear. Using the eye as the CNS model, here it is first indicated that placing mice in an exercise stimulation environment induced DNA methylation patterns and transcriptomes of retinal ganglion cell, promoted axon regeneration after injury, and reversed vision loss in aged mice. These beneficial effects are dependent on the DNA demethylases TET3-mediated epigenetic effects, which increased the expression of genes associated with the regenerative growth programs, such as STAT3, Wnt5a, Klf6. Exercise training also shows with the improved mitochondrial and metabolic dysfunction in retinas and optic nerves via TET3. Collectively, these results suggested that the increased regenerative capacity induced by enhancing physical activity is mediated through epigenetic reprogramming in mouse model of optic nerve injury and in aged mouse. Understanding the molecular mechanism underlying exercise-dependent neuronal plasticity led to the identification of novel targets for ameliorating pathologies associated with etiologically diverse diseases.

2.
Org Lett ; 26(27): 5695-5699, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38912656

RESUMO

One rare stephacidin-asperochratide hybrid, stephaochratidin A (1), was isolated from the deep-sea-derived Aspergillus ochraceus MCCC 3A00521. The relative structure of 1 was determined by comprehensive analyses of its 1D and 2D NMR data as well as HRESIMS data. And the absolute configuration was unambiguously assigned by ECD calculations and the X-ray single-crystal diffraction analysis. Plausible biosynthetic pathway of 1 was proposed. Stephaochratidin A (1) exhibited significant ferroptosis inhibitory activity with the EC50 value of 15.4 µM by downregulating HMOX-1 expression and lipid peroxidation.


Assuntos
Aspergillus ochraceus , Ferroptose , Ferroptose/efeitos dos fármacos , Estrutura Molecular , Aspergillus ochraceus/química , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos
3.
Opt Express ; 32(7): 12200-12212, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38571050

RESUMO

As an integral component of the laser interferometry measurement system, the tilt-to-length (TTL) coupling noise inside the telescope stands out as a critical noise factor that requires meticulous consideration. In the TianQin project, the non-geometric TTL-coupled noise inside the telescope should be less than 0.22 pm/Hz1/2. Additionally, the wavefront aberration RMS at the small pupil of the telescope needs to be better than 0.0065 λ. These requirements set for the telescope are exceptionally stringent. To address this challenge, this study aims to relax the wavefront aberration requirements by mitigating non-geometric TTL coupling noise, while ensuring the non-geometric TTL coupling noise remains below 0.22 pm/Hz1/2. By controlling the coupling aberration proportion, the wavefront aberration RMS at the small pupil of the telescope can be relaxed to 0.014 λ. Alternatively, optimizing the Gaussian beam waist radius can relax the wavefront aberration RMS to 0.016 λ. By simultaneously utilizing two optimization methods, the wavefront aberration at the small pupil of the telescope can be reduced to 0.033 λ, resulting in an impressive success rate of 91.15% in meeting the noise requirements.

4.
ACS Appl Mater Interfaces ; 15(28): 34272-34289, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37415272

RESUMO

Dye/salt separation in textile wastewater is of great importance. Membrane filtration technology is an environmentally friendly and effective approach to solve this issue. In this study, a thin-film composite membrane with a tannic acid (TA)-modified carboxylic multiwalled carbon nanotube (MWCNT) interlayer (M-TA) was prepared by interfacial polymerization with amino-functionalized graphene quantum dots (NGQDs) acting as aqueous monomers. The addition of the M-TA interlayer favored the formation of a thinner, more hydrophilic, and smoother selective skin layer for the composite membrane. The pure water permeability of the M-TA-NGQDs membrane was ∼9.32 L m-2 h-1 bar-1, which was higher than that of the NGQDs membrane without the interlayer. Meanwhile, the M-TA-NGQDs membrane presented better methyl orange (MO) rejection (97.79%) than the NGQDs membrane (87.51%). The optimal M-TA-NGQDs membrane exhibited excellent dye rejection (Congo red (CR): 99.61%; brilliant green (BG): 96.04%) and low salt rejection (NaCl < 15%). Noticeably, the M-TA-NGQDs membrane displayed effective selective separation performance (CR and BG > 99%) for dye/NaCl mixed solutions even at a high NaCl concentration of 50,000 mg/L. Furthermore, the M-TA-NGQDs membrane presented high water permeability recovery ratio values (91.02-98.20%). Importantly, the M-TA-NGQDs membrane showed excellent chemical stability (acid/alkali resistance). Generally, the fabricated M-TA-NGQDs membrane exhibited a great prospect for applications in dye wastewater treatment and water recycling, especially for the effective selective separation of dye/salt mixtures for high-salinity textile dyeing wastewater.

5.
ACS Appl Mater Interfaces ; 15(21): 25633-25649, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37198933

RESUMO

A nanofiltration membrane functionalized with metal-organic frameworks (MOFs) is promising to enhance micropollutant removal and realize wastewater reclamation. However, the current MOF-based nanofiltration membranes still suffer from severe fouling problems with an indefinable mechanism when used for antibiotic wastewater treatment. Hence, we report a nature-inspired MOF-based thin-film nanocomposite (TFN-CU) membrane to explore its rejection and antifouling behavior. Compared with unmodified membranes, the optimal TFN-CU5 membrane (with 5 mg·mL-1 C-UiO-66-NH2) had high water permeance (17.66 ± 1.19 L·m-2·h-1·bar-1), exceptional rejection for norfloxacin (97.92 ± 2.28%) and ofloxacin (95.36 ± 1.03%), and excellent long-term stability for treating synthetic secondary effluent with antibiotic rejection over 90%. Furthermore, it also showed superior antifouling capability (flux recovery up to 95.86 ± 1.28%) in bovine serum albumin (BSA) filtration after fouling cycles. Deriving from the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) approach, the antifouling mechanism between BSA and the TFN-CU5 membrane was mainly attributed to the inhibited adhesion forces because the growing short-ranged acid-base interaction caused repulsive interfacial interactions. It is further revealed that BSA fouling behavior is slightly retarded under an alkaline environment, while strengthened in the presence of calcium ions and humic acid, as well as high ionic strength. In short, the nature-inspired MOF-based TFN membranes possess exceptional rejection and organic fouling resistance, giving insights into the design of antifouling membranes during antibiotic wastewater reclamation.


Assuntos
Estruturas Metalorgânicas , Nanocompostos , Águas Residuárias , Fluoroquinolonas , Antibacterianos/farmacologia , Membranas Artificiais
6.
Front Microbiol ; 14: 1122172, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007464

RESUMO

Background and objective: Neonatal jaundice is a common clinical disease in neonates. Pathologic jaundice is more harmful to neonates. There are a few studies on the biomarkers of pathologic jaundice and the correlation between gut microbiota and clinical indices. Therefore, we aimed to reveal the characteristics of gut microbiota in pathologic jaundice, provide potential biomarkers for the diagnosis of pathologic jaundice, and find the correlation between gut microbiota and clinical indices. Methods: Fourteen neonates with physiologic jaundice were recruited into a control group (Group A). Additionally, 14 neonates with pathologic jaundice were recruited into a case group (Group B). The microbial communities were analyzed using 16S rDNA sequencing. LEfSe and the differences in the relative abundance of gut microbiota were used to identify different bacteria among the two groups. The ROC curve was used to assess effective biomarkers for pathologic jaundice. Spearman's rank-sum correlation coefficient was used to evaluate the correlation between gut microbiota and clinical indices. Results: There were no differences in the total richness or diversity of gut microbiota between the two groups. At the phylum and genus levels, compared with the control group, Bacteroidetes (p = 0.002) and Braydrhizobium (p = 0.01) were significantly higher, while Actinobacteria (p = 0.003) and Bidfldobacterium (p = 0.016) were significantly lower in the case group. Bacteroidetes were valuable in differentiating pathologic jaundice from physiologic jaundice by the ROC curve, and the area under the ROC curve (AUC) value was 0.839 [95%CI (0.648-0.995)]. In the case group, Bacteroidetes were negatively associated with total bilirubin (TBIL) (p < 0.05). In the control group, Bacteroidetes were positively associated with TBIL (p < 0.05). Conclusion: Bacteroidetes could be used as biomarkers to identify pathologic jaundice and Bacteroidetes are positively associated with bilirubin levels.

7.
Artigo em Inglês | MEDLINE | ID: mdl-37030820

RESUMO

Although previous graph-based multi-view clustering (MVC) algorithms have gained significant progress, most of them are still faced with three limitations. First, they often suffer from high computational complexity, which restricts their applications in large-scale scenarios. Second, they usually perform graph learning either at the single-view level or at the view-consensus level, but often neglect the possibility of the joint learning of single-view and consensus graphs. Third, many of them rely on the k -means for discretization of the spectral embeddings, which lack the ability to directly learn the graph with discrete cluster structure. In light of this, this article presents an efficient MVC approach via unified and discrete bipartite graph learning (UDBGL). Specifically, the anchor-based subspace learning is incorporated to learn the view-specific bipartite graphs from multiple views, upon which the bipartite graph fusion is leveraged to learn a view-consensus bipartite graph with adaptive weight learning. Furthermore, the Laplacian rank constraint is imposed to ensure that the fused bipartite graph has discrete cluster structures (with a specific number of connected components). By simultaneously formulating the view-specific bipartite graph learning, the view-consensus bipartite graph learning, and the discrete cluster structure learning into a unified objective function, an efficient minimization algorithm is then designed to tackle this optimization problem and directly achieve a discrete clustering solution without requiring additional partitioning, which notably has linear time complexity in data size. Experiments on a variety of multi-view datasets demonstrate the robustness and efficiency of our UDBGL approach. The code is available at https://github.com/huangdonghere/UDBGL.

8.
Fitoterapia ; 167: 105473, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36931529

RESUMO

In this work we investigated the chemical constituents of water extract of the leaves of Cyclocarya paliurus. Two new megastigmane glycosides (3 and 8), three aliphatic alcohol glycosides (9-11), and two aromatic glycosides (12 and 13), along with fourteen known compounds were isolated, and their in vitro inhibitory activity against α-glucosidase was evaluated. Compounds 13 and 15-18 displayed inhibitory activity with IC50 values varying from 27.05 to 96.58 µM, and the structure-activity relationship among isolated compounds was discussed.


Assuntos
Glicosídeos , alfa-Glucosidases , Glicosídeos/química , alfa-Glucosidases/metabolismo , Extratos Vegetais/química , Água/análise , Estrutura Molecular , Folhas de Planta/química
9.
J Colloid Interface Sci ; 641: 197-214, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36933467

RESUMO

For better sustainable resource recovery and elevating the separation efficiency of dye/salt mixture, it is essential to develop an appropriate nanofiltration membrane for the treatment of textile dyeing wastewater containing relatively smaller molecule dyes. In this work, a novel composite polyamide-polyester nanofiltration membrane was fabricated by tailoring amino functionalized quantum dots (NGQDs) and ß-cyclodextrin (CD). An in-situ interfacial polymerization occurred between the synthesized NGQDs-CD and trimesoyl chloride (TMC) on the modified multi-carbon nanotubes (MWCNTs) substrate. The incorporation of NGQDs significantly elevated the rejection (increased by âˆ¼ 45.08%) of the resultant membrane for small molecular dye (Methyl orange, MO) compared to the pristine CD membrane at low pressure (1.5 bar). The newly developed NGQDs-CD-MWCNTs membrane exhibited enhanced water permeability without compromising the dye rejection compared to the pure NGQDs membrane. The improved performance of the membrane was primarily attributed to the synergistic effect of functionalized NGQDs and the special hollow-bowl structure of CD. The optimal NGQDs-CD-MWCNTs-5 membrane expressed pure water permeability of 12.35 L m-2h-1 bar-1 at the pressure of 1.5 bar. Noteworthily, the NGQDs-CD-MWCNTs-5 membrane not only showed high rejection for the larger molecular dye of Congo Red (CR, 99.50%) but also for the smaller molecular dye of MO (96.01%) and Brilliant Green (BG, 95.60%) with the permeability of 8.81, 11.40, and 6.37 L m-2h-1 bar-1, respectively at low pressure (1.5 bar). The rejection of inorganic salts by the NGQDs-CD-MWCNTs-5 membrane was 17.20% for sodium chloride (NaCl), 14.30% for magnesium chloride (MgCl2), 24.63% for magnesium sulfate (MgSO4), and 54.58% for sodium sulfate (Na2SO4), respectively. The great rejection of dyes remained in the dye/salt binary mixed system (higher than 99% for BG and CR, <21% for NaCl). Importantly, the NGQDs-CD-MWCNTs-5 membrane exhibited favorable antifouling performance and potential good operation stability performance. Consequently, the fabricated NGQDs-CD-MWCNTs-5 membrane suggested a prospective application for the reuse of salts and water in textile wastewater treatment owing to the effective selective separation performance.

10.
PLoS Med ; 20(1): e1003988, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36595504

RESUMO

BACKGROUND: Prostate cancer (PrCa) is the second most prevalent malignancy in men worldwide. Observational studies have linked the use of low-density lipoprotein cholesterol (LDL-c) lowering therapies with reduced risk of PrCa, which may potentially be attributable to confounding factors. In this study, we performed a drug target Mendelian randomisation (MR) analysis to evaluate the association of genetically proxied inhibition of LDL-c-lowering drug targets on risk of PrCa. METHODS AND FINDINGS: Single-nucleotide polymorphisms (SNPs) associated with LDL-c (P < 5 × 10-8) from the Global Lipids Genetics Consortium genome-wide association study (GWAS) (N = 1,320,016) and located in and around the HMGCR, NPC1L1, and PCSK9 genes were used to proxy the therapeutic inhibition of these targets. Summary-level data regarding the risk of total, advanced, and early-onset PrCa were obtained from the PRACTICAL consortium. Validation analyses were performed using genetic instruments from an LDL-c GWAS conducted on male UK Biobank participants of European ancestry (N = 201,678), as well as instruments selected based on liver-derived gene expression and circulation plasma levels of targets. We also investigated whether putative mediators may play a role in findings for traits previously implicated in PrCa risk (i.e., lipoprotein a (Lp(a)), body mass index (BMI), and testosterone). Applying two-sample MR using the inverse-variance weighted approach provided strong evidence supporting an effect of genetically proxied inhibition of PCSK9 (equivalent to a standard deviation (SD) reduction in LDL-c) on lower risk of total PrCa (odds ratio (OR) = 0.85, 95% confidence interval (CI) = 0.76 to 0.96, P = 9.15 × 10-3) and early-onset PrCa (OR = 0.70, 95% CI = 0.52 to 0.95, P = 0.023). Genetically proxied HMGCR inhibition provided a similar central effect estimate on PrCa risk, although with a wider 95% CI (OR = 0.83, 95% CI = 0.62 to 1.13, P = 0.244), whereas genetically proxied NPC1L1 inhibition had an effect on higher PrCa risk with a 95% CI that likewise included the null (OR = 1.34, 95% CI = 0.87 to 2.04, P = 0.180). Analyses using male-stratified instruments provided consistent results. Secondary MR analyses supported a genetically proxied effect of liver-specific PCSK9 expression (OR = 0.90 per SD reduction in PCSK9 expression, 95% CI = 0.86 to 0.95, P = 5.50 × 10-5) and circulating plasma levels of PCSK9 (OR = 0.93 per SD reduction in PCSK9 protein levels, 95% CI = 0.87 to 0.997, P = 0.04) on PrCa risk. Colocalization analyses identified strong evidence (posterior probability (PPA) = 81.3%) of a shared genetic variant (rs553741) between liver-derived PCSK9 expression and PrCa risk, whereas weak evidence was found for HMGCR (PPA = 0.33%) and NPC1L1 expression (PPA = 0.38%). Moreover, genetically proxied PCSK9 inhibition was strongly associated with Lp(a) levels (Beta = -0.08, 95% CI = -0.12 to -0.05, P = 1.00 × 10-5), but not BMI or testosterone, indicating a possible role for Lp(a) in the biological mechanism underlying the association between PCSK9 and PrCa. Notably, we emphasise that our estimates are based on a lifelong exposure that makes direct comparisons with trial results challenging. CONCLUSIONS: Our study supports a strong association between genetically proxied inhibition of PCSK9 and a lower risk of total and early-onset PrCa, potentially through an alternative mechanism other than the on-target effect on LDL-c. Further evidence from clinical studies is needed to confirm this finding as well as the putative mediatory role of Lp(a).


Assuntos
Pró-Proteína Convertase 9 , Neoplasias da Próstata , Humanos , Masculino , Pró-Proteína Convertase 9/genética , Estudo de Associação Genômica Ampla , LDL-Colesterol , Polimorfismo de Nucleotídeo Único , Neoplasias da Próstata/genética , Testosterona , Análise da Randomização Mendeliana
11.
Mol Pharm ; 20(1): 630-640, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36398935

RESUMO

To seek a novel 99mTc-labeled quinolone derivative for bacterial infection SPECT imaging that aims to lower nontarget organ uptake, a novel norfloxacin 6-hydrazinoicotinamide (HYNIC) derivative (HYNICNF) was designed and synthesized. It was radiolabeled with different coligands, such as tricine, trisodium triphenylphosphine-3,3',3″-trisulfonate (TPPTS), sodium triphenylphosphine-3-monosulfonate (TPPMS), and ethylenediamine-N,N'-diacetic acid (EDDA), to obtain three 99mTc-labeled norfloxacin HYNIC complexes, namely, [99mTc]Tc-tricine-TPPTS-HYNICNF, [99mTc]Tc-tricine-TPPMS-HYNICNF, and [99mTc]Tc-EDDA-HYNICNF. These complexes were purified (RCP > 95%) and evaluated in vitro and in vivo for targeting bacteria. All three complexes are hydrophilic, maintain good stability, and specifically bind Staphylococcus aureus in vitro. The biodistribution in mice with bacterial infection demonstrated that [99mTc]Tc-EDDA-HYNICNF showed a higher abscess uptake and lower nontarget organ uptake and was able to distinguish bacterial infection and sterile inflammation. Single photon emission computed tomography (SPECT) image study in bacterial infection mice showed there was a visible accumulation in the infection site, suggesting that [99mTc]Tc-EDDA-HYNICNF is a potential radiotracer for bacterial infection imaging.


Assuntos
Infecções Bacterianas , Tecnécio , Camundongos , Animais , Norfloxacino , Distribuição Tecidual , Compostos de Organotecnécio/metabolismo , Compostos Radiofarmacêuticos/metabolismo
12.
Hum Mol Genet ; 32(2): 192-203, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-35932451

RESUMO

Participant overlap can induce overfitting bias into Mendelian randomization (MR) and polygenic risk score (PRS) studies. Here, we evaluated a block jackknife resampling framework for genome-wide association studies (GWAS) and PRS construction to mitigate overfitting bias in MR analyses and implemented this study design in a causal inference setting using data from the UK Biobank. We simulated PRS and MR under three scenarios: (1) using weighted SNP estimates from an external GWAS, (2) using weighted SNP estimates from an overlapping GWAS sample and (3) using a block jackknife resampling framework. Based on a P-value threshold to derive genetic instruments for MR studies (P < 5 × 10-8) and a 10% variance in the exposure explained by all SNPs, block-jackknifing PRS did not suffer from overfitting bias (mean R2 = 0.034) compared with the externally weighted PRS (mean R2 = 0.040). In contrast, genetic instruments derived from overlapping samples explained a higher variance (mean R2 = 0.048) compared with the externally derived score. Overfitting became considerably more severe when using a more liberal P-value threshold to construct PRS (e.g. P < 0.05, overlapping sample PRS mean R2 = 0.103, externally weighted PRS mean R2 = 0.086), whereas estimates using jackknife score remained robust to overfitting (mean R2 = 0.084). Using block jackknife resampling MR in an applied analysis, we examined the effects of body mass index on circulating biomarkers which provided comparable estimates to an externally weighted instrument, whereas the overfitted scores typically provided narrower confidence intervals. Furthermore, we extended this framework into sex-stratified, multivariate and bidirectional settings to investigate the effect of childhood body size on adult testosterone levels.


Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Adulto , Humanos , Fatores de Risco , Índice de Massa Corporal , Polimorfismo de Nucleotídeo Único/genética
13.
Elife ; 112022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36219204

RESUMO

Background: Polygenic scores (PGS) are becoming an increasingly popular approach to predict complex disease risk, although they also hold the potential to develop insight into the molecular profiles of patients with an elevated genetic predisposition to disease. Methods: We sought to construct an atlas of associations between 125 different PGS derived using results from genome-wide association studies and 249 circulating metabolites in up to 83,004 participants from the UK Biobank. Results: As an exemplar to demonstrate the value of this atlas, we conducted a hypothesis-free evaluation of all associations with glycoprotein acetyls (GlycA), an inflammatory biomarker. Using bidirectional Mendelian randomization, we find that the associations highlighted likely reflect the effect of risk factors, such as adiposity or liability towards smoking, on systemic inflammation as opposed to the converse direction. Moreover, we repeated all analyses in our atlas within age strata to investigate potential sources of collider bias, such as medication usage. This was exemplified by comparing associations between lipoprotein lipid profiles and the coronary artery disease PGS in the youngest and oldest age strata, which had differing proportions of individuals undergoing statin therapy. Lastly, we generated all PGS-metabolite associations stratified by sex and separately after excluding 13 established lipid-associated loci to further evaluate the robustness of findings. Conclusions: We envisage that the atlas of results constructed in our study will motivate future hypothesis generation and help prioritize and deprioritize circulating metabolic traits for in-depth investigations. All results can be visualized and downloaded at http://mrcieu.mrsoftware.org/metabolites_PRS_atlas. Funding: This work is supported by funding from the Wellcome Trust, the British Heart Foundation, and the Medical Research Council Integrative Epidemiology Unit.


Assuntos
Estudo de Associação Genômica Ampla , Inibidores de Hidroximetilglutaril-CoA Redutases , Biomarcadores , Predisposição Genética para Doença , Humanos , Lipídeos , Herança Multifatorial
14.
Phytochemistry ; 204: 113434, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36169036

RESUMO

Cyclocarya paliurus, a Chinese herbal medicine and new food resource, contains a triterpenic-acid-rich extract that demonstrated ameliorative effect on diabetic nephropathy (DN). A more in-depth discovery of functional components led to the isolation of seven new triterpenoids including two pentacyclic triterpenes, 1α,2α,3ß,23-tetrahydroxyolean-12-en-28-oic acid and 2α,3ß,22α-tirhydroxyurs-12-en-28-oic acid 28-O-ß-D-glucopyranoside, and five tetracyclic triterpenoid glycosides (cypaliurusides N-R), together with twelve known compounds from the leaves of C. paliurus. Their structures were determined using a comprehensive analysis of chemical and spectroscopic data. Partial compounds were assessed for anti-fibrotic activities in high-glucose and TGF-ß1 induced HK-2 cells. Compound 16 remarkably decreased the level of fibronectin with an inhibition rate of 37.1%. Furthermore, 16 effectively alleviated the epithelial-mesenchymal transformation (EMT) process by upregulating E-cadherin expression and downregulating α-SMA expression, and it significantly decreased the level of the transcriptional inhibitors (Snail and Twist) of E-cadherin. The discovery of anti-fibrotic compounds from C. paliurus provides the potential utilization and functional candidates for the DN prevention.

15.
Front Immunol ; 13: 951107, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967401

RESUMO

Although numerous clinical trials have been implemented, an absolutely effective treatment against coronavirus disease 2019 (COVID-19) is still elusive. Interleukin-22 (IL-22) has attracted great interest over recent years, making it one of the best-studied cytokines of the interleukin-10 (IL-10) family. Unlike most interleukins, the major impact of IL-22 is exclusively on fibroblasts and epithelial cells due to the restricted expression of receptor. Numerous studies have suggested that IL-22 plays a crucial role in anti-viral infections through significantly ameliorating the immune cell-mediated inflammatory responses, and reducing tissue injury as well as further promoting epithelial repair and regeneration. Herein, we pay special attention to the role of IL-22 in the lungs. We summarize the latest progress in our understanding of IL-22 in lung health and disease and further discuss maneuvering this cytokine as potential immunotherapeutic strategy for the effective manage of COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Interleucinas , Pulmão , COVID-19/imunologia , Citocinas/imunologia , Citocinas/uso terapêutico , Humanos , Interleucinas/imunologia , Interleucinas/uso terapêutico , Pulmão/imunologia , Interleucina 22
16.
ACS Appl Mater Interfaces ; 14(34): 38990-39003, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35976131

RESUMO

Thin-film nanocomposite (TFN) membranes with efficient molecular separation and organic solvent resistance are active in demand in wastewater treatment and resource reclamation, meeting the goal of emission peaks and carbon neutrality. In this work, a simple and rational design strategy has been employed to construct a sandwich-structured membrane for removing fluoroquinolone antibiotics and recycling organic solvents. The sandwich-structured membrane is composed of a porous substrate, a hydrophilic tannic acid-polyethyleneimine (TA-PEI) interlayer, and a polyamide (PA) selective layer decorated with metal-organic framework (PA-MOF). Results manifest that the hydrophilic TA-PEI interlayer played a bridging and gutter effect to achieve effective control in amide storage, amine diffusion, and nanomaterial downward leakage at the immiscible interface. The PA-MOF selective layer has been changed to a loosely crumpled surface, endowing functionalities on the sandwich-structured membrane that included limited pores, strengthened electronegativity, and stronger hydrophilicity. Thus, an enhanced water flux of 87.23 ± 7.43 LMH was achieved by the TFN-2 membrane (0.04 mg·mL-1 UiO-66-NH2), which is more than five times that of the thin-film composite membrane (17.46 ± 3.88 LMH). The rejection against norfloxacin, ciprofloxacin, and levofloxacin is 92.94 ± 1.60%, 94.62 ± 1.29%, and 96.92 ± 1.05%, respectively, effectively breaking through the "trade-off" effect between membrane permeability and rejection efficiency. Further antifouling results showed that the sandwich-structured membrane had lower flux decay ratios (3.36∼7.07%) and higher flux recovery ratios (93.40∼98.40%), as well as superior long-term stability after 30 days of filtration. Moreover, organic solvent resistance testing confirms that the sandwich-structured membrane maintained stable solvent flux and better recovery rates in ethanol, acetone, isopropanol, and N,N-dimethylformamide. Detailed nanofiltration mechanism studies revealed that these outstanding performances are based on the joint effect of the TA-PEI interlayer and PA-MOF selective layer, proposing a new perspective to break through the bottleneck of nanofiltration application in a complex environment.


Assuntos
Antibacterianos , Membranas Artificiais , Filtração/métodos , Estruturas Metalorgânicas , Nylons/química , Ácidos Ftálicos , Solventes
17.
Infect Drug Resist ; 15: 3611-3618, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837539

RESUMO

Background: The COVID-19 pandemic has continued for more than two years since its outbreak. Due to the clinical auscultation needs of doctors when wearing airtight protective clothing, a cylindrical tube stethoscope was proposed to address this problem. However, the idea has been questioned by some experts. Methods: To address these questions, we performed three-part experiments using cylindrical tube stethoscopes. First, we performed laboratory tests to detect the sound intensity from a cylindrical tube stethoscope. Second, we improved the cylindrical tube stethoscope to achieve better results. Third, we revealed the difference in the auscultation effects of the cylindrical tube stethoscope and a conventional professional 3 M stethoscope. Results: From these experiments, we found that a narrow cylindrical tube with a diameter of 4.2 cm and a length of 20 cm equipped with a silicone gasket better auscultation of heart sounds. A cylindrical tube stethoscope and a 3 M stethoscope were used to perform stethoscope tests on 10 volunteers. The alveolar lung sounds were 44.478 decibels vs 49.529 decibels, the heart sounds were 46.631 decibels vs 41.109 decibels, and the intestinal sounds were 40.132 decibels vs 43.787 decibels, respectively. Conclusion: This improved cylindrical tube stethoscope can meet the auscultation requirements for cardiorespiratory and abdominal diagnosis during infectious disease pandemics.

18.
Bioengineered ; 13(5): 11987-12002, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35603556

RESUMO

AFAP1-AS1 plays a pro-tumor role in lung cancer. However, no investigation has focused on whether it is involved in the anticancer activity of metformin (Met) in the treatment of lung adenocarcinoma (LUAD). Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was performed to detect the expression of long non-coding (lnc)RNA AFAP1-AS1, the microRNA (miR)-3163, and secreted phosphoprotein 1 (SPP1) in LUAD tissues, or of A549 and H3122 cells. Cell Counting Kit-8, wound scratch, and cell invasion assays were performed to evaluate the effect of the overexpression of lncRNA AFAP1-AS1, miR-3163, and SPP1 on the malignant behaviors of A549 and H3122 cells. Phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway-related proteins were detected by Western blot analysis. Dual luciferase reporter or RIP assays were used to determine the interplay between AFAP1-AS1 and miR-3163, or of miR-3163 and SPP1. Met inhibits the malignant characteristics of A549 and H3122 cells in vitro. GEPIA database analysis showed that AFAP1-AS1 is a highly expressed lncRNA in LUAD tissues, which was validated by RT-qPCR. Overexpression of AFAP1-AS1 suppressed the met-mediated anti-tumor activity in A549 and H3122 cells, while AFAP1-AS1 silencing promoted it. Met inhibited AFAP1-AS1 expression, which resulted in reduced proliferation, migration, and invasion in A549 and H3122 cells. This led to AFAP1-AS1-mediated suppression of miR-3163 and, subsequently, the upregulation of SPP1. Met exerts its antitumor activities by regulating the AFAP1-AS1/miR-3163/SPP1/PI3K/Akt/mTOR axis. Our findings deepen our understanding of mechanisms underlying anti-tumor effect of Met in LUAD.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Metformina , MicroRNAs , RNA Longo não Codificante , Linhagem Celular Tumoral , Proliferação de Células/genética , Humanos , Pulmão/metabolismo , Metformina/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Osteopontina , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Serina-Treonina Quinases TOR/genética
19.
Obesity (Silver Spring) ; 30(6): 1298-1310, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35598895

RESUMO

OBJECTIVE: This study estimated the effect of BMI on circulating metabolites in young adults using a recall-by-genotype study design. METHODS: A recall-by-genotype study was implemented in the Avon Longitudinal Study of Parents and Children. Samples from 756 participants were selected for untargeted metabolomics analysis based on low versus high genetic liability for higher BMI defined by a genetic risk score (GRS). Regression analyses were performed to investigate associations between BMI GRS group and relative abundance of 973 metabolites. RESULTS: After correction for multiple testing, 29 metabolites were associated with BMI GRS group. Bilirubin was among the most strongly associated metabolites, with reduced levels measured in individuals in the high-BMI GRS group (ß = -0.32, 95% CI: -0.46 to -0.18, Benjamini-Hochberg adjusted p = 0.005). This study observed associations between BMI GRS group and the levels of several potentially diet-related metabolites, including hippurate, which had lower mean abundance in individuals in the high-BMI GRS group (ß = -0.29, 95% CI: -0.44 to -0.15, Benjamini-Hochberg adjusted p = 0.008). CONCLUSIONS: Together with existing literature, these results suggest that a genetic predisposition to higher BMI captures differences in metabolism leading to adiposity gain. In the absence of prospective data, separating these effects from the downstream consequences of weight gain is challenging.


Assuntos
Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Índice de Massa Corporal , Criança , Genótipo , Humanos , Estudos Longitudinais , Metabolômica , Estudos Prospectivos , Fatores de Risco , Adulto Jovem
20.
Nat Commun ; 13(1): 2337, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484151

RESUMO

The rising prevalence of childhood obesity has been postulated as an explanation for the increasing rate of individuals diagnosed with type 1 diabetes (T1D). In this study, we use Mendelian randomization (MR) to provide evidence that childhood body size has an effect on T1D risk (OR = 2.05 per change in body size category, 95% CI = 1.20 to 3.50, P = 0.008), which remains after accounting for body size at birth and during adulthood using multivariable MR (OR = 2.32, 95% CI = 1.21 to 4.42, P = 0.013). We validate this direct effect of childhood body size using data from a large-scale T1D meta-analysis based on n = 15,573 cases and n = 158,408 controls (OR = 1.94, 95% CI = 1.21 to 3.12, P = 0.006). We also provide evidence that childhood body size influences risk of asthma, eczema and hypothyroidism, although multivariable MR suggested that these effects are mediated by body size in later life. Our findings support a causal role for higher childhood body size on risk of being diagnosed with T1D, whereas its influence on the other immune-associated diseases is likely explained by a long-term effect of remaining overweight for many years over the lifecourse.


Assuntos
Diabetes Mellitus Tipo 1 , Obesidade Infantil , Adulto , Tamanho Corporal , Criança , Diabetes Mellitus Tipo 1/epidemiologia , Diabetes Mellitus Tipo 1/genética , Humanos , Recém-Nascido , Análise da Randomização Mendeliana , Sobrepeso/complicações , Obesidade Infantil/complicações , Obesidade Infantil/epidemiologia , Obesidade Infantil/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...