RESUMO
In addition to affecting animal health and production, antimicrobial resistance (AMR) in livestock can have far-reaching social and economic consequences, including on human health and the environment. Given the diversity of data needs and the absence of standardised methodologies, the scale of antimicrobial use (AMU) and AMR's social and economic burden on livestock is complex to gauge. Yet, quantifying this impact can be an essential input for farm-level decision-making and, more widely, for policy development, public awareness, resource allocation to interventions and research and development prioritisation, particularly in a One Health context. This work proposes a conceptual framework to guide the assessment of the burden of AMU and AMR in livestock using the Global Burden of Animal Diseases (GBADs) approach. Its development identified and mapped critical socio-economic concepts in AMU and AMR in livestock and their relationships. The Animal Health Loss Envelope (AHLE), a monetary metric that sets a boundary for overall losses from health hazards and allows an understanding of the relative importance of health problems in livestock, was used as the metric in which the concepts and data needs for the AMU and AMR assessment were anchored. The proposed framework identifies pathways for losses and data inputs needed to estimate the burden of AMU and AMR within this wider envelope of losses. These include information on health expenditure and mortality and morbidity effects related to AMR in livestock. This work highlights the need for improved health and production data collection in livestock production as an essential stepping stone to accurately producing AMU and AMR burden estimates.
RESUMO
BACKGROUND: Bacterial antimicrobial resistance (AMR) is a global threat to both humans and livestock. Despite this, there is limited global consensus on data-informed, priority areas for intervention in both sectors. We compare current livestock AMR data collection efforts with other variables pertinent to human and livestock AMR to identify critical data gaps and mutual priorities. METHODS: We globally synthesized livestock AMR data from open-source surveillance reports and point prevalence surveys stratified for six pathogens (Escherichia coli, Staphylococcus aureus, non-typhoidal Salmonella, Campylobacter spp., Enterococcus faecalis, Enterococcus faecium) and eleven antimicrobial classes important in human and veterinary use, published between 2000 and 2020. We also included all livestock species represented in the data: cattle, chickens, pigs, sheep, turkeys, ducks, horses, buffaloes, and goats. We compared this data with intended priorities calculated from: disability-adjusted life years (DALYs), livestock antimicrobial usage (AMU), livestock biomass, and a global correlation exercise between livestock and human proportion of resistant isolates. RESULTS: Resistance to fluoroquinolones and macrolides in Staphylococcus aureus were identified as priorities in many countries but, less than 10% of these reported livestock AMR data. Resistance data for Escherichia coli specific to cattle, chickens, and pigs, which we prioritized, were also well collected. AMR data collection on non-typhoidal Salmonella and other livestock species were often not prioritized. Of 232 categories prioritized by at least one country, data were only collected for 48% (n = 112). CONCLUSIONS: The lack of livestock AMR data globally for broad resistance in Staphylococcus aureus could underplay their zoonotic threat. Countries can bolster livestock AMR data collection, reporting, and intervention setting for Staphylococcus aureus as done for Escherichia coli. This framework can provide guidance on areas to strengthen AMR surveillance and decision-making for humans and livestock, and if done routinely, can adapt to resistance trends and priorities.
Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Gado , Animais , Gado/microbiologia , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Bactérias/classificação , Bovinos , Monitoramento EpidemiológicoRESUMO
Exposure to extreme heat is associated with both increased morbidity and mortality, especially in older people. Health burdens associated with heat include heat stroke, diabetes mellitus, hypertension, ischemic heart diseases, heart failure and arrhythmia, pulmonary diseases but also injuries, problems with activities of daily living, and mental disorders. In Europe, there are remarkable spatial differences in heat exposure between urban and less populated areas. In Austria, for example, there is a significant gradual association between population density and the number of heat days, where the gradient of urbanization also follows the gradient of sea level. The European population is continuously ageing, especially in rural areas. Older adults are especially vulnerable to negative health consequences resulting from heat exposure, due to a lack of physiological, social, cognitive, and behavioral resources. Older people living in urban areas are particularly at risk, due to the urban heat island effect, the heat-promoting interplay between conditions typically found in cities, such as a lack of vegetation combined with a high proportion of built-up areas; however, older people living in rural regions often have less infrastructure to cope with extreme heat, such as fewer cooling centers and emergency services. Additionally, older adults still engaged in agricultural or forestry activities may be exposed to high temperatures without adequate protection or hydration. More research is required to examine factors responsible for heat vulnerability in older adults and the interactions and possibilities for increasing resilience in older urban and rural populations to the health consequences of heat.
Assuntos
Transtornos de Estresse por Calor , População Rural , População Urbana , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Europa (Continente)/epidemiologia , Calor Extremo/efeitos adversos , Transtornos de Estresse por Calor/epidemiologia , Fatores de Risco , População Rural/estatística & dados numéricos , População Urbana/estatística & dados numéricos , Populações Vulneráveis/estatística & dados numéricosRESUMO
Bacterial antimicrobial resistance (AMR) is among the leading global health challenges of the century. Animals and their products are known contributors to the human AMR burden, but the extent of this contribution is not clear. This systematic literature review aimed to identify studies investigating the direct impact of animal sources, defined as livestock, aquaculture, pets, and animal-based food, on human AMR. We searched four scientific databases and identified 31 relevant publications, including 12 risk assessments, 16 source attribution studies, and three other studies. Most studies were published between 2012 and 2022, and most came from Europe and North America, but we also identified five articles from South and South-East Asia. The studies differed in their methodologies, conceptual approaches (bottom-up, top-down, and complex), definitions of the AMR hazard and outcome, the number and type of sources they addressed, and the outcome measures they reported. The most frequently addressed animal source was chicken, followed by cattle and pigs. Most studies investigated bacteria-resistance combinations. Overall, studies on the direct contribution of animal sources of AMR are rare but increasing. More recent publications tailor their methodologies increasingly towards the AMR hazard as a whole, providing grounds for future research to build on.
Assuntos
Anti-Infecciosos , Infecções Bacterianas , Humanos , Animais , Bovinos , Suínos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Bactérias , Infecções Bacterianas/epidemiologia , Infecções Bacterianas/veterinária , Infecções Bacterianas/tratamento farmacológico , GalinhasRESUMO
The majority of emerging infectious diseases are zoonoses, most of which are classified as "neglected". By affecting both humans and animals, zoonoses pose a dual burden. The disability-adjusted life year (DALY) metric quantifies human health burden since it combines mortality and morbidity. This review aims to describe and analyze the current state of evidence on neglected zoonotic diseases (NZDs) burden and start a discussion on the current understanding of the global burden of NZDs. We identified 26 priority NZDs through consulting three international repositories for national prioritization exercises. A systematic review of global and national burden of disease (BoD) studies was conducted using pre-selected databases. Data on diseases, location and DALYs were extracted for each eligible study. A total of 1887 records were screened, resulting in 74 eligible studies. The highest number of BoD was found for non-typhoidal salmonellosis (23), whereas no estimates were found for West Nile, Marburg and Lassa fever. Geographically, the highest number of studies was performed in the Netherlands (11), China (5) and Iran (4). The number of BoD retrieved mismatched the perceived importance in national prioritization exercises. For example, anthrax was considered a priority NZD in 65 countries; however, only one national study estimating BoD was retrieved. By summing the available global estimates, the selected NZDs caused at least 21 million DALYs per year, a similar order of magnitude to (but less than) the burden due to foodborne disease (included in the Foodborne Disease Burden Epidemiology Reference Group). The global burden of disease landscape of NZDs remains scattered. There are several priority NZDs for which no burden estimates exist, and the number of BoD studies does not reflect national disease priorities. To have complete and consistent estimates of the global burden of NZDs, these diseases should be integrated in larger global burden of disease initiatives.
RESUMO
BACKGROUND: Foodborne and zoonotic diseases such as brucellosis present many challenges to public health and economic welfare. Increasingly, researchers and public health institutes use disability-adjusted life years (DALYs) to generate a comprehensive comparison of the population health impact of these conditions. DALYs calculations, however, entail a number of methodological choices and assumptions, with data gaps and uncertainties to accommodate. Thisreview identifies existing brucellosis burden of disease studies and analyzes their methodological choices, assumptions, and uncertainties. It supports the Global Burden of Animal Diseases programme in the development of a systematic methodology to describe the impact of animal diseases on society, including human health. METHODS/PRINCIPAL FINDINGS: A systematic search for brucellosis burden of disease calculations was conducted in pre-selected international and grey literature databases. Using a standardized reporting framework, we evaluated each estimate on a variety of key methodological assumptions necessary to compute a DALY. Fourteen studies satisfied the inclusion criteria (human brucellosis and quantification of DALYs). One study reported estimates at the global level, the rest were national or subnational assessments. Data regarding different methodological choices were extracted, including detailed assessments of the adopted disease models. Most studies retrieved brucellosis epidemiological data from administrative registries. Incidence data were often estimated on the basis of laboratory-confirmed tests. Not all studies included mortality estimates (Years of Life Lost) in their assessments due to lack of data or the assumption that brucellosis is not a fatal disease. Only two studies used a model with variable health states and corresponding disability weights. The rest used a simplified singular health state approach. Wide variation was seen in the duration chosen for brucellosis, ranging from 2 weeks to 4.5 years, irrespective of the whether a chronic state was included. CONCLUSION: Available brucellosis burden of disease assessments vary widely in their methodology and assumptions. Further research is needed to better characterize the clinical course of brucellosis and to estimate case-fatality rates. Additionally, reporting of methodological choices should be improved to enhance transparency and comparability of estimates. These steps will increase the value of these estimates for policy makers.
Assuntos
Brucelose , Expectativa de Vida , Humanos , Anos de Vida Ajustados por Qualidade de Vida , Saúde Global , Brucelose/epidemiologia , Efeitos Psicossociais da DoençaRESUMO
BACKGROUND: Legionnaires' disease (LD) is a severe bacterial infection causing pneumonia. Surveillance commonly underestimates the true incidence as not all cases are laboratory confirmed and reported to public health authorities. The aim of this study was to present indicators for the impact of LD in Belgium between 2013 and 2017 and to estimate its true burden in the Belgian population in 2017, the most recent year for which the necessary data were available. METHODS: Belgian hospital discharge data, data from three infectious disease surveillance systems (mandatory notification, sentinel laboratories and the national reference center), information on reimbursed diagnostic tests from the Belgian National Institute for Health and Disability Insurance and mortality data from the Belgian statistical office were used. To arrive at an estimate of the total number of symptomatic cases in Belgium, we defined a surveillance pyramid and estimated a multiplication factor to account for LD cases not captured by surveillance. The multiplication factor was then applied to the pooled number of LD cases reported by the three surveillance systems. This estimate was the basis for our hazard- and incidence-based Disability-Adjusted Life Years (DALYs) calculation. To account for uncertainty in the estimations of the DALYs and the true incidence, we used Monte Carlo simulations with 10,000 iterations. RESULTS: We found an average of 184 LD cases reported by Belgian hospitals annually (2013-2017), the majority of which were male (72%). The surveillance databases reported 215 LD cases per year on average, 11% of which were fatal within 90 days after diagnosis. The estimation of the true incidence in the community yielded 2674 (95% Uncertainty Interval [UI]: 2425-2965) cases in 2017. LD caused 3.05 DALYs per case (95%UI: 1.67-4.65) and 8147 (95%UI: 4453-12,426) total DALYs in Belgium in 2017, which corresponds to 71.96 (95%UI: 39.33-109.75) DALYs per 100,000 persons. CONCLUSIONS: This analysis revealed a considerable burden of LD in Belgium that is vastly underestimated by surveillance data. Comparison with other European DALY estimates underlines the impact of the used data sources and methodological approaches on burden estimates, illustrating that national burden of disease studies remain essential.