Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 71(12): 8481-90, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16332838

RESUMO

A sandwich hybridization assay for high-throughput, rapid, simple, and inexpensive quantification of specific microbial populations was evaluated. The assay is based on the hybridization of a target rRNA with differentially labeled capture and detector probes. Betaproteobacterial ammonia-oxidizing bacteria (AOB) were selected as the target group for the study, since they represent a phylogenetically coherent group of organisms that perform a well-defined geochemical function in natural and engineered environments. Reagent concentrations, probe combinations, and washing, blocking, and hybridization conditions were optimized to improve signal and reduce background. The detection limits for the optimized RNA assay were equivalent to approximately 10(3) to 10(4) and 10(4) to 10(5) bacterial cells, respectively, for E. coli rRNA and RNA extracted from activated sludge, by using probes targeting the majority of bacteria. Furthermore, the RNA assay had good specificity, permitted discrimination of rRNA sequences that differed by a 2-bp mismatch in the probe target region, and could distinguish the sizes of AOB populations in nitrifying and nonnitrifying wastewater treatment plants.


Assuntos
Bactérias/genética , Técnicas Genéticas , Hibridização de Ácido Nucleico , Bactérias/classificação , Bactérias/isolamento & purificação , Medições Luminescentes , RNA Bacteriano/genética , RNA Ribossômico/genética , RNA Ribossômico 16S/genética , Reprodutibilidade dos Testes , Esgotos/microbiologia , Eliminação de Resíduos Líquidos
2.
FEMS Microbiol Ecol ; 43(2): 195-206, 2003 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19719680

RESUMO

Autotrophic ammonia-oxidising bacteria (AOB) are a crucial component of the microbial communities of nitrifying wastewater treatment systems. Nitrification is known to occur in reactors of different configuration, but whether AOB communities are different in reactors of different design is unknown. We compared the diversity and community structure of the betaproteobacterial AOB in two full-scale treatment reactors - a biological aerated filter (BAF) and a trickling filter - receiving the same wastewater. Polymerase chain reaction (PCR) of 16S ribosomal RNA (rRNA) gene fragments with AOB-selective primers was combined with denaturing gradient gel electrophoresis (DGGE) to allow comparative analysis of the dominant AOB populations. The phylogenetic affiliation of the dominant AOB was determined by cloning and sequencing PCR-amplified 16S rRNA gene fragments. DGGE profiles were compared using a probability-based similarity index (Raup and Crick). The use of a probability-based index of similarity allowed us to evaluate if the differences and similarities observed in AOB community structure in different samples were statistically significant or could be accounted for by chance matching of bands in DGGE profiles, which would suggest random colonisation of the reactors by different AOB. The community structure of AOB was different in different sections of each of the reactors and differences were also noted between the reactors. All AOB-like sequences identified, grouped within the genus Nitrosomonas. A greater diversity of AOB was detected in the trickling filters than in the BAF though all samples analysed appeared to be dominated by AOB most closely related to Nitrosococcus mobilis. Numerical analysis of DGGE profiles indicated that the AOB communities in depth profiles from the filter beds were selected in a non-random manner.

3.
Environ Toxicol ; 17(3): 284-90, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12112637

RESUMO

Direct toxicity assessment of wastewater is becoming necessary, and new legislation may render it compulsory for the water industry. At present such assessment is performed at a laboratory away from a site, at considerable cost, and results often come too late, after a toxic event has occurred and the toxin has been released into the environment. Some of the rapid toxicity tests available today require certain conditions to function properly, or their results do not always correlate with other methods. The objective of this study was to assess a portable device, the Baroxymeter, for its suitability as an instrument to test wastewater toxicity. The way the device works is based on monitoring respiration of a bacterial culture by pressure measurements and using respiration inhibition as a toxicity alert. It has been shown that it is possible to detect toxic substances such as 3,5-dichlorophenol and bronopol within 5 min from a 1-mL sample. The benefits and future applications of the Baroxymeter as a high-throughput, cost-effective alternative for toxicity screening are discussed in this article.


Assuntos
Fenômenos Fisiológicos Bacterianos , Testes de Toxicidade/métodos , Eliminação de Resíduos Líquidos , Microbiologia da Água , Poluentes da Água/toxicidade , Análise Custo-Benefício , Desenho de Equipamento , Oxigênio/análise , Oxigênio/metabolismo , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...