Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Gen Comp Endocrinol ; 288: 113345, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31812531

RESUMO

Natural and synthetic estrogens and progestins are widely used in human and veterinary medicine and are detected in waste and surface waters. Our previous studies have clearly shown that a number of these substances targets the brain to induce the estrogen-regulated brain aromatase expression but the consequences on brain development remain virtually unexplored. The aim of the present study was therefore to investigate the effect of estradiol (E2), progesterone (P4) and norethindrone (NOR), a 19-nortestosterone progestin, on zebrafish larval neurogenesis. We first demonstrated using real-time quantitative PCR that nuclear estrogen and progesterone receptor brain expression is impacted by E2, P4 and NOR. We brought evidence that brain proliferative and apoptotic activities were differentially affected depending on the steroidal hormone studied, the concentration of steroids and the region investigated. Our findings demonstrate for the first time that steroid compounds released in aquatic environment have the capacity to disrupt key cellular events involved in brain development in zebrafish embryos further questioning the short- and long-term consequences of this disruption on the physiology and behavior of organisms.


Assuntos
Congêneres do Estradiol/farmacologia , Estrogênios/farmacologia , Sistema Nervoso/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Congêneres da Progesterona/farmacologia , Progesterona/farmacologia , Peixe-Zebra/embriologia , Animais , Embrião não Mamífero , Desenvolvimento Embrionário/efeitos dos fármacos , Disruptores Endócrinos/farmacologia , Estradiol/farmacologia , Estrogênios/análogos & derivados , Estrogênios/síntese química , Humanos , Ligantes , Nandrolona/farmacologia , Sistema Nervoso/embriologia , Células Neuroendócrinas/efeitos dos fármacos , Células Neuroendócrinas/fisiologia , Noretindrona/farmacologia , Progesterona/análogos & derivados , Progesterona/síntese química , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/agonistas , Receptores de Progesterona/metabolismo , Peixe-Zebra/crescimento & desenvolvimento
2.
Neurotox Res ; 33(1): 87-112, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28879461

RESUMO

We recently demonstrated that perinatal exposure to the glutamate-related herbicide, glufosinate ammonium, has deleterious effects on neural stem cell (NSC) homeostasis within the sub-ventricular zone (SVZ), probably leading to ASD-like symptoms in offspring later in life. In the present study, we aimed to investigate whether perinatal exposure to another glutamate-related toxicant, the cyanobacterial amino acid ß-N-methylamino-L-alanine (BMAA), might also trigger neurodevelopmental disturbances. With this aim, female mice were intranasally exposed to low doses of BMAA, 50 mg kg-1 three times a week from embryonic days 7-10 to postnatal day 21. Behavioral analyses were performed during the offspring's early life and during adulthood. Developmental analyses revealed that perinatal exposure to BMAA hastened the appearance of some reflexes and communicative skills. BMAA-exposed offspring displayed sex-dependent changes in emotional cognition shortly after exposure. Later in life, the female offspring continued to express emotional defects and to display abnormal sociability, while males were less affected. To assess whether early exposure to BMAA had deleterious effects on NSC homeostasis, we exposed mice NSCs to 1 and 3 mM BMAA during 24 h. We found that BMAA-exposed NSCs produced high levels of ROS, highlighting the ability of BMAA to induce oxidative stress. We also showed that BMAA exposure increased the number of γH2AX/53BP1 foci per nucleus, suggesting that BMAA-induced DNA damage in NSCs. Collectively, this data strongly suggests that perinatal exposure to the cyanobacteria BMAA, even at low doses, results in neurobehavioral disturbances during both the postnatal period and adulthood. This is considered to be underpinned at the cellular level through dysregulation of NSC homeostasis in the developing brain.


Assuntos
Diamino Aminoácidos/toxicidade , Dano ao DNA/efeitos dos fármacos , Transtornos Mentais/etiologia , Neurotoxinas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Fatores Etários , Animais , Animais Recém-Nascidos , Toxinas de Cianobactérias , Deficiências do Desenvolvimento/induzido quimicamente , Embrião de Mamíferos , Comportamento Exploratório/efeitos dos fármacos , Olho/fisiopatologia , Feminino , Histonas/metabolismo , Masculino , Comportamento Materno/efeitos dos fármacos , Camundongos , Força Muscular/efeitos dos fármacos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Desempenho Psicomotor/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Reflexo/efeitos dos fármacos , Caracteres Sexuais , Natação , Vocalização Animal/efeitos dos fármacos
3.
Front Cell Neurosci ; 10: 191, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27555806

RESUMO

Neurogenesis, a process of generating functional neurons from neural precursors, occurs throughout life in restricted brain regions such as the subventricular zone (SVZ). During this process, newly generated neurons migrate along the rostral migratory stream to the olfactory bulb to replace granule cells and periglomerular neurons. This neuronal migration is pivotal not only for neuronal plasticity but also for adapted olfactory based behaviors. Perturbation of this highly controlled system by exogenous chemicals has been associated with neurodevelopmental disorders. We reported recently that perinatal exposure to low dose herbicide glufosinate ammonium (GLA), leads to long lasting behavioral defects reminiscent of Autism Spectrum Disorder-like phenotype in the offspring (Laugeray et al., 2014). Herein, we demonstrate that perinatal exposure to low dose GLA induces alterations in neuroblast proliferation within the SVZ and abnormal migration from the SVZ to the olfactory bulbs. These disturbances are not only concomitant to changes in cell morphology, proliferation and apoptosis, but are also associated with transcriptomic changes. Therefore, we demonstrate for the first time that perinatal exposure to low dose GLA alters SVZ neurogenesis. Jointly with our previous work, the present results provide new evidence on the link between molecular and cellular consequences of early life exposure to the herbicide GLA and the onset of ASD-like phenotype later in life.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...