Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 12(1): 592, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852494

RESUMO

BACKGROUND: Eimeria tenella is a highly pathogenic coccidian that causes avian coccidiosis. Both nitromezuril (NZL) and ethanamizuril (EZL) are novel triazine compounds with high anticoccidial activity, but the mechanisms of their action are still unclear. This study explored the response of E. tenella to NZL and EZL by the study of changes in protein composition of the second-generation merozoites. METHODS: Label-free quantification (LFQ) proteomics of the second-generation merozoites of E. tenella following NZL and EZL treatment were studied by LC-MS/MS to explore the mechanisms of action. The identified proteins were annotated and analyzed by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and protein-protein interaction (PPI) networks analysis. RESULTS: A total of 1430 proteins were identified by LC-MS/MS, of which 375 were considered as differential proteins in response to drug treatment (DPs). There were 26 only found in the NZL treatment group (N-group), 63 exclusive to the EZL treatment group (E-group), and 80 proteins were present in both drug groups. In addition, among the DPs, the abundant proteins with significantly altered expression in response to drug treatment (SDPs) were found compared with the C-group, of which 49 were upregulated and 51 were downregulated in the N-group, and 66 upregulated and 79 downregulated in the E-group. Many upregulated proteins after drug treatment were involved in transcription and protein metabolism, and surface antigen proteins (SAGs) were among the largest proportion of the downregulated SDPs. Results showed the top two enriched GO terms and the top one enriched pathway treated with EZL and NZL were related, which indicated that these two compounds had similar modes of action. CONCLUSIONS: LFQ proteomic analysis is a feasible method for screening drug-related proteins. Drug treatment affected transcription and protein metabolism, and SAGs were also affected significantly. This study provided new insights into the effects of triazine anticoccidials against E. tenella.


Assuntos
Coccidiose/veterinária , Coccidiostáticos/administração & dosagem , Eimeria tenella/crescimento & desenvolvimento , Merozoítos/efeitos dos fármacos , Doenças das Aves Domésticas/tratamento farmacológico , Proteínas de Protozoários/química , Triazinas/administração & dosagem , Animais , Galinhas , Coccidiose/tratamento farmacológico , Coccidiose/parasitologia , Eimeria tenella/efeitos dos fármacos , Eimeria tenella/genética , Eimeria tenella/metabolismo , Merozoítos/genética , Merozoítos/crescimento & desenvolvimento , Merozoítos/metabolismo , Doenças das Aves Domésticas/parasitologia , Proteômica , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Espectrometria de Massas em Tandem
2.
Vet Parasitol ; 215: 88-91, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26790742

RESUMO

As an obligate intracellular apicomplexan parasite, Eimeria tenella (E. tenella) can rapidly invade chicken cecum epithelial cells and cause avian coccidiosis. Enolase, an essential enzyme that catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate, plays a very important role in glycolysis. In this study, each chicken was inoculated with 8×10(4) sporulated E. tenella oocysts suspended in 1ml of distilled water to determine the effects of acetamizuril, a new triazine anticoccidial drug, on enolase in the second-generation merozoites of E. tenella. The chickens were divided into two groups: the untreatment group (challenged with E. tenella oocysts and provided with normal feed) and the treatment group (challenged with E. tenella oocysts and provided with 5mg/kg of acetamizuril by oral gavage at 96h after inoculation). The second-generation merozoites of E. tenella (mz-En) were obtained at 120h after inoculation. Subsequently, quantitative real-time PCR and Western blotting were conducted to detect the enolase changes in mz-En at the transcriptional and translational levels. The results showed that enolase mRNA expression was downregulated, and the translational level was decreased in the treatment group. In addition, the subcellular localization of enolase demonstrated that enolase was distributed primarily at the top of the mz-En and that the fluorescence intensity was weak after treatment with acetamizuril. These findings indicated that enolase may be a promising target to prevent coccidiosis.


Assuntos
Coccidiostáticos/farmacologia , Eimeria tenella/efeitos dos fármacos , Eimeria tenella/enzimologia , Merozoítos/efeitos dos fármacos , Merozoítos/enzimologia , Fosfopiruvato Hidratase/metabolismo , Triazinas/farmacologia , Animais , Galinhas , Coccidiose/parasitologia , Coccidiose/veterinária , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Masculino , Fosfopiruvato Hidratase/genética , Doenças das Aves Domésticas/parasitologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Protozoário/genética
3.
Carbohydr Polym ; 89(2): 461-6, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24750744

RESUMO

To evaluate the immune activation and reactive oxygen species scavenging activity of Cordyceps militaris polysaccharides (CMP) in vivo, 90 male BALB/c mice were randomly divided into six groups. The mice in the three experimental groups were given cyclophosphamide at 80 mg/kg/d via intraperitoneal injection and 17.5, 35, or 70 mg/kg body weight CMP via gavage. The lymphocyte proliferation, phagocytic index, and biochemical parameters were measured. The results show that the administration of CMP was able to overcome the CY-induced immunosuppression, significantly increased the spleen and thymus indices, and enhanced the spleen lymphocyte activity and macrophage function. CMP can also improve the antioxidation activity in immunosuppressed mice, significantly increase the superoxidase dismutase, catalase, and glutathione peroxidase levels and the total antioxidant capacity, and decrease the malondialdehyde levels in vivo.


Assuntos
Antioxidantes/farmacologia , Cordyceps , Polissacarídeos Fúngicos/farmacologia , Fatores Imunológicos/farmacologia , Animais , Catalase/metabolismo , Proliferação de Células/efeitos dos fármacos , Ciclofosfamida/farmacologia , Carpóforos , Glutationa Peroxidase/metabolismo , Terapia de Imunossupressão , Imunossupressores/farmacologia , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Linfócitos/efeitos dos fármacos , Linfócitos/fisiologia , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Masculino , Malondialdeído/metabolismo , Camundongos Endogâmicos BALB C , Miocárdio/metabolismo , Fagocitose/efeitos dos fármacos , Baço/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Timo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...