Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 920
Filtrar
1.
Biomaterials ; 312: 122716, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39121731

RESUMO

Meniscus is vital for maintaining the anatomical and functional integrity of knee. Injuries to meniscus, commonly caused by trauma or degenerative processes, can result in knee joint dysfunction and secondary osteoarthritis, while current conservative and surgical interventions for meniscus injuries bear suboptimal outcomes. In the past decade, there has been a significant focus on advancing meniscus tissue engineering, encompassing isolated scaffold strategies, biological augmentation, physical stimulus, and meniscus organoids, to improve the prognosis of meniscus injuries. Despite noteworthy promising preclinical results, translational gaps and inconsistencies in the therapeutic efficiency between preclinical and clinical studies exist. This review comprehensively outlines the developments in meniscus tissue engineering over the past decade (Scheme 1). Reasons for the discordant results between preclinical and clinical trials, as well as potential strategies to expedite the translation of bench-to-bedside approaches are analyzed and discussed.


Assuntos
Menisco , Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Humanos , Animais , Alicerces Teciduais/química , Pesquisa Translacional Biomédica
2.
Cancer Res Commun ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39373625

RESUMO

Growing evidence indicates a relationship between telomere length (TL) and the stage, prognosis, and treatment responsiveness of hematopoietic malignancies. However, the relationship between TL and the risk of hematologic malignancies remains unclear, considering the vulnerability of observational studies to potential confounding and reverse causation. Two-sample bidirectional mendelian randomization (MR) analysis was conducted utilizing publicly available genome-wide association study data to assess whether TL was causally associated with the risk of hematologic malignancies. The inverse variance-weighted approach was used as the primary assessment approach to evaluate the effects of the causes, augmented by the weighted median and MR-Egger methods. Cochran's Q test, MR Egger intercept test, MR-PRESSO, and leave-one-out analysis were performed to evaluate sensitivity, heterogeneity, and pleiotropy. According to forward MR estimations, longer TL was related to an increased risk of acute lymphocytic leukemia (OR=2.690, p=0.041), chronic lymphocytic leukemia (OR=2.155, p=0.005), multiple myeloma (OR=1.845, p=0.024), Hodgkin lymphoma (OR=1.697, p=0.014), and non-Hodgkin lymphoma (OR=1.737, p=0.009). Specific types of non-Hodgkin lymphoma were also associated with TL. The reverse MR results revealed that hematological malignancies had no effect on TL. This MR analysis revealed an association between longer TL and an increased risk of specific hematologic malignancies, indicating a potential role of TL in the risk evaluation and management in hematologic malignancies.

4.
Small Methods ; : e2401023, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39246211

RESUMO

Atomic-resolution scanning transmission electron microscopy (STEM) characterization requires precise tilting of the specimen to a high symmetric zone axis, which is usually processed in reciprocal space by following the diffraction patterns. However, for small-sized nanocrystalline materials, their diffraction patterns are often too faint to guide the tilting process. Here, a simple and effective tilting method is developed based on the diffraction contrast change of the shadow image in the Ronchigram. The misorientation angle of the specimen can be calculated and tilted to the zone axis based on the position of the shadow image with lowest intensity. This method requires no prior knowledge of the sample and the maximum misorientation angle that can be corrected is >±6.9° with sub-mrad accuracy. It operates in real space, without recording the diffraction patterns of the specimens, making it particularly effective for nanocrystalline materials. Combined with the scripting to control the microscope, the sample can be automatically tilted to the zone axis under low dose conditions (<0.17 e- Å- 2 s-1), facilitating the imaging of beam sensitive materials such as zeolites or metal-organic frameworks. This automated tilting method can significantly contribute to the atomic-scale characterization of the nanocrystalline materials by STEM imaging.

5.
BMC Endocr Disord ; 24(1): 185, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256645

RESUMO

BACKGROUND: The triglyceride-glucose (TyG) index is recognized as a robust indicator for evaluating insulin resistance (IR). Despite the well-documented anti-aging biological functions of Klotho protein, its correlation with the TyG index remains unexplored. METHODS: A cross-sectional analysis was conducted involving participants from the National Health and Nutrition Examination Surveys (NHANES) 2007-2016. The TyG index was computed using laboratory data, while serum Klotho concentrations was determined using ELISA kit. After adjusting potential confounding variables, multivariate regression models were employed to evaluate the association between the TyG index and Klotho protein levels among middle-aged and elderly females and males separately. Additionally, smooth curve fitting and segmented regression model were applied to investigate potential threshold effects and identify the inflection point. RESULTS: A total of 6,573 adults qualified for inclusion, comprising 3,147 (47.88%) males and 3,426 (52.12%) females. Multivariate regression analysis revealed that females with a higher TyG index exhibited significantly lower serum Klotho concentrations (ß=-83.41, 95% CI: -124.23 to -42.60, P < 0.0001). This association was not statistically significant in males (ß = 15.40, 95% CI: -19.16 to 49.95, P = 0.3827). Subgroup analyses revealed a significant interaction effect by diabetes status in females (P-interaction = 0.0121), where non-diabetic females showed a stronger negative association between TyG index and serum Klotho levels compared to diabetic females. In the female group, when TyG index was divided into quartiles, individuals in the highest quartile of TyG index exhibited reduced levels of Klotho protein (Q4: -88.77 pg/ml) compared to those in the lowest quartile (Q1) after full adjustment (P = 0.0041). Segmented regression analysis indicated a turning point value of 9.4 in females. Notably, a 1-unit increase in TyG index was significantly associated with a decrease in Klotho levels by -111.43 pg/ml (95% CI: -157.34 to -65.52, P < 0.0001) when TyG index was below 9.4, while above this threshold, the association was not significant (Log likelihood ratio test: 0.009). CONCLUSIONS: The findings highlight a non-linear correlation between the TyG index and serum Klotho concentrations among females, indicative of a saturation effect. This relationship was particularly pronounced in non-diabetic women. In contrast, no statistically significant association was observed in male participants.


Assuntos
Glicemia , Glucuronidase , Proteínas Klotho , Triglicerídeos , Humanos , Proteínas Klotho/sangue , Masculino , Feminino , Estudos Transversais , Pessoa de Meia-Idade , Triglicerídeos/sangue , Idoso , Glicemia/análise , Glicemia/metabolismo , Glucuronidase/sangue , Resistência à Insulina , Fatores Sexuais , Inquéritos Nutricionais , Biomarcadores/sangue , Prognóstico
6.
Plant Cell Environ ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39262218

RESUMO

Nicotiana benthamiana, a widely acknowledged laboratory model plant for molecular studies, exhibits lethality to certain insect pests and can serve as a dead-end trap plant for pest control in the field. However, the underlying mechanism of N. benthamiana's resistance against insects remains unknown. Here, we elucidate that the lethal effect of N. benthamiana on the whitefly Bemisia tabaci arises from the toxic glandular trichome exudates. By comparing the metabolite profiles of trichome exudates, we found that 51 metabolites, including five O-acyl sugars (O-AS) with medium-chain acyl moieties, were highly accumulated in N. benthamiana. Silencing of two O-AS biosynthesis genes, branched-chain keto acid dehydrogenase (BCKD) and Isopropyl malate synthase-C (IPMS-C), significantly reduced the O-AS levels in N. benthamiana and its resistance against whiteflies. Additionally, we demonstrated that the higher expression levels of BCKD and IPMS-C in the trichomes of N. benthamiana contribute to O-AS synthesis and consequently enhance whitefly resistance. Furthermore, overexpression of NbBCKD and NbIPMS-C genes in the cultivated tobacco Nicotiana tabacum enhanced its resistance to whiteflies. Our study revealed the metabolic and molecular mechanisms underlying the lethal effect of N. benthamiana on whiteflies and presents a promising avenue for improving whitefly resistance.

7.
Front Psychol ; 15: 1338190, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39257409

RESUMO

Prior research has shown that physical activity (PA) is a crucial element for preserving and enhancing health, particularly among children and adolescents, and consistent engagement in PA offers numerous advantages for sustaining typical physical and mental well-being. Purpose: Hence, the primary objective of this study was to examine the relationship between sport participation, muscle-strengthening exercise (MSE), and active commuting (AC) in the co-occurrence of depression and anxiety in Chinese children and adolescents. Method: This cross-sectional investigation occurred in various cities across the southeastern region of China between March 2021 and October 2021. A convenient sampling method was utilized. We invited children and adolescents to participate in the questionnaire survey. A total of 1,996 participants completed the questionnaires with the endorsement of their parents or guardians under the supervision of schoolteachers and headmasters. Girls comprised 47.5% of the participants, and the average age of participants was 14.8 ± 2.0 years. We conducted a logistic regression analysis, including 95% confidence intervals, to explore the association between sports participation, MSE, AC, and the co-occurrence of depression and anxiety. Results: No significant association was observed between weekday active commuting for travelling to and from school and MSE and the comorbidity of depression and anxiety in children and adolescents. A negative association was only detected for those who engaged in muscle-strengthening exercises 4 days a week (OR = 0.540, 95% CI = 0.345-0.845) compared to those who did not partake in such exercises. Conclusion: The present study has provided evidence of the connection between sports participation and the co-occurrence of depression and anxiety among Chinese children and adolescents. Sports participation is more likely to help adolescents relieve anxiety and depression than AC, MSE. In forthcoming research, it is imperative to delve deeper into strategies that enhance the impact of sports on the mental well-being of children and young individuals. Furthermore, optimizing the magnitude of this effect may be achievable by focusing on neurobiological, behavioral, and psychosocial mechanisms.

8.
J Colloid Interface Sci ; 678(Pt B): 925-937, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39270392

RESUMO

The effectiveness of chemokinetic therapy nanozymes is severely constrained because of the low H2O2 levels in the tumor microenvironment. Unlike other self-produced H2O2 nanozymes, the N-CNTs-encapsulated CoNi alloy (CoNiCoNC) with glucose oxidase and lactate oxidase activities has two ways to produce H2O2. It can facilitate the transformation of glucose and lactic acid into H2O2 simultaneously. First, the H2O2 generation pathway is favorable for aggravating energy metabolism. Second, some produced H2O2 can be decomposed by CoNiCoNC to H2O and O2 with the 4e- pathway to alleviate the TME hypoxia. Third, H2O2 can be catalyzed to form OH to enhance reactive oxygen species (ROS) content. Through proteomic analysis, nanozymes substantially impact the metabolic pathways of cancer cells because of their aggravating energy metabolism. The high levels of ROS can cause mitochondrial lipid peroxidation and cellular ferroptosis. Consequently, the two-way H2O2-selective nanoenzymatic platform realizes the synergistic effect of starvation therapy and chemokinetics.

9.
Int J Biol Macromol ; 280(Pt 2): 135651, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39278429

RESUMO

Breast cancer, the most common cancer among women worldwide, lacks specific tumor markers for accurate diagnosis. Recent advances have highlighted tumor-derived exosomes as a promising non-invasive biomarker for cancer detection. Continuous monitoring of surface protein markers on exosomes in the blood could offer valuable insights for breast cancer diagnosis. However, integrating the isolation and detection of exosomes from whole blood is bulky, time-consuming, and requires professional operations. To address this difficulty, we developed a method of integrated centrifugal disk chip (CD chip) exosome enrichment directly from whole blood followed by a colorimetric visualization strategy for multiplex analysis. The disc consists of multi-chambers and multi-microchannels with immediate smartphone-enabled processing of colorimetric results. The combination of CEA + CA125 + EGFR on-chip detection could significantly differentiate the different stages of cancer in tumor-bearing mice and successfully distinguish between breast cancer patients and healthy individuals. Crucially, small volumes (100 µL) of blood samples were adequate. In addition, the chip was simple and fast, with results within 10 min, which provides immediate exosomal information through consecutive blood sampling, which could potentially result in a more timely and well-informed clinical breast cancer diagnosis.

10.
Pest Manag Sci ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258464

RESUMO

BACKGROUND: The whitefly Bemisia tabaci is one of the world's foremost agricultural pests. Recently, we found that a wild relative of tobacco (Nicotiana benthamiana) demonstrates remarkable attractiveness and nearly 100% lethality towards whiteflies. Therefore, it can act as a dead-end trap crop for whitefly control in the field. However, the underlying mechanism of the significant attractiveness of N. benthamiana towards whiteflies is unclear. RESULTS: Binary-choice assays and olfactory experiments showed that compared to common tobacco (N. tabacum), the volatile of N. benthamiana has a greater attraction to whiteflies. Then we analyzed and compared volatiles from these two Nicotiana species by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). We identified 16 chemical compounds that are more abundant in N. benthamiana than in N. tabacum. Seven compounds were further tested with olfactometer assays and we found that, among them, undecane strongly attracted whiteflies. Further experiments revealed that even 0.005 µg mL-1 undecane is attractive to whiteflies. We also silenced the genes that may influence the biosynthesis of undecane and found the production of undecane decreased after silencing NbCER3, and that N. benthamiana plants with less undecane lost their attraction to whiteflies. In addition, we found that applying 0.005 µg mL-1 undecane on yellow sticky traps can increase the number of stuck insects on the traps by ≈40%. CONCLUSION: Undecane from the volatile of N. benthamiana is a critical chemical signal that attracts whiteflies and NbCER3 involved in the biosynthesis of undecane. Undecane may be used to improve the efficiency of yellow sticky traps for whitefly control. © 2024 Society of Chemical Industry.

11.
Phys Imaging Radiat Oncol ; 31: 100622, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39220115

RESUMO

Background and purpose: In sliding-window intensity-modulated radiotherapy, increased plan modulation often leads to increased plan complexities and dose uncertainties. Dose calculation and/or measurement checks are usually adopted for pre-treatment verification. This study aims to evaluate the relationship among plan complexities, calculated doses and measured doses. Materials and methods: A total of 53 plan complexity metrics (PCMs) were selected, emphasizing small field characteristics and leaf speed/acceleration. Doses were retrieved from two beam-matched treatment devices. The intended dose was computed employing the Anisotropic Analytical Algorithm and validated through Monte Carlo (MC) and Collapsed Cone Convolution (CCC) algorithms. To measure the delivered dose, 3D diode arrays of various geometries, encompassing helical, cross, and oblique cross shapes, were utilized. Their interrelation was assessed via Spearman correlation analysis and principal component linear regression (PCR). Results: The correlation coefficients between calculation-based (CQA) and measurement-based verification quality assurance (MQA) were below 0.53. Most PCMs showed higher correlation rpcm-QA with CQA (max: 0.84) than MQA (max: 0.65). The proportion of rpcm-QA  ≥ 0.5 was the largest in the pelvis compared to head-and-neck and chest-and-abdomen, and the highest rpcm-QA occurred at 1 %/1mm. Some modulation indices for the MLC speed and acceleration were significantly correlated with CQA and MQA. PCR's determination coefficients (R2 ) indicated PCMs had higher accuracy in predicting CQA (max: 0.75) than MQA (max: 0.42). Conclusions: CQA and MQA demonstrated a weak correlation. Compared to MQA, CQA exhibited a stronger correlation with PCMs. Certain PCMs related to MLC movement effectively indicated variations in both quality assurances.

12.
Artigo em Inglês | MEDLINE | ID: mdl-39297962

RESUMO

BACKGROUND: Intraosseous regional administration (IORA) as a widely applicable and clinically valuable route of administration has gained significant attention in the context of total knee arthroplasty (TKA) for the prophylactic administration of antibiotics. However, there is still controversy regarding its effectiveness and safety. The latest meta-analysis reports that the use of IORA for antibiotics in TKA is as safe and effective as IV administration in preventing prosthetic joint infection (PJI), but they did not separate the statistics for primary TKA and revision TKA, which may be inappropriate. There is currently a lack of evidence specifically comparing the outcomes of prophylactic antibiotic administration via IORA or IV route in primary/revision TKA, respectively, and new research evidence has emerged. PURPOSES: In this study, we conducted a systematic review and meta-analysis with the primary objective of comparing the local drug tissue concentration and the incidence of PJI between preoperative IORA and intravenous (IV) administration of prophylactic antibiotics in TKA. Additionally, the occurrence of complications between the two administration routes was also compared. PATIENTS AND METHODS: This meta-analysis was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-analyses statement (PRISMA) guidelines. Retrospective cohort studies and prospective randomized controlled trials that utilized intraosseous local drug delivery for prophylactic antibiotics in knee arthroplasty were included. English literature from PubMed, Embase, and Cochrane Library databases was searched from the inception of each database until December 2023. Two researchers independently screened the literature, assessed the quality, and extracted data according to the inclusion criteria. The primary outcomes were local antibiotic tissue concentration and postoperative PJI incidence, while the secondary outcome was the occurrence of postoperative complications. Statistical analysis was performed using Review Manager 5.3 software. RESULTS: This study included 7 prospective randomized controlled trials and 5 retrospective cohort studies. A total of 4091 patients participated in the 12 included studies, with 1,801 cases receiving IORA and 2,290 cases in the control group. In terms of local drug tissue concentration, intraosseous infusion (IO) 500 mg vancomycin significantly increased the drug concentration in the periarticular adipose tissue (SMD: 1.36; 95% CI: 0.87-1.84; P < 0.001; I2 = 0%) and bone tissue (SMD: 0.94; 95% CI: 0.49-1.40; P < 0.001; I2 = 0%) compared to IV 1 g vancomycin. Regarding the incidence of postoperative PJI after primary TKA, IO 500 mg vancomycin was more effective in reducing the occurrence of PJI compared to IV 1 g vancomycin (OR: 0.19; 95% CI: 0.06-0.59; P < 0.001; I2 = 36%). Finally, no significant differences were found between the two groups in terms of postoperative pulmonary embolism (PE) (OR: 1.72; 95% CI: 0.22-13.69; P = 0.59; I2 = 0%) and vancomycin-related complications (OR: 0.54; 95% CI: 0.25-1.19; P = 0.44; I2 = 0%). CONCLUSIONS: Preoperative prophylactic antibiotic administration via IORA in TKA significantly increases local drug tissue concentration without significantly increasing systemic drug-related complications compared to traditional IV administration. In primary TKA, low-dose vancomycin via IORA is more effective in reducing the incidence of PJI compared to traditional IV regimens. However, its effectiveness remains controversial in high-risk populations for PJI, such as obese, diabetic, and renal insufficiency patients, as well as in revision TKA.

13.
Proc Natl Acad Sci U S A ; 121(39): e2408974121, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39292742

RESUMO

Metamaterial has been captivated a popular notion, offering photonic functionalities beyond the capabilities of natural materials. Its desirable functionality primarily relies on well-controlled conditions such as structural resonance, dispersion, geometry, filling fraction, external actuation, etc. However, its fundamental building blocks-meta-atoms-still rely on naturally occurring substances. Here, we propose and validate the concept of gradient and reversible atomic-engineered metamaterials (GRAM), which represents a platform for continuously tunable solid metaphotonics by atomic manipulation. GRAM consists of an atomic heterogenous interface of amorphous host and noble metals at the bottom, and the top interface was designed to facilitate the reversible movement of foreign atoms. Continuous and reversible changes in GRAM's refractive index and atomic structures are observed in the presence of a thermal field. We achieve multiple optical states of GRAM at varying temperature and time and demonstrate GRAM-based tunable nanophotonic devices in the visible spectrum. Further, high-efficiency and programmable laser raster-scanning patterns can be locally controlled by adjusting power and speed, without any mask-assisted or complex nanofabrication. Our approach casts a distinct, multilevel, and reversible postfabrication recipe to modify a solid material's properties at the atomic scale, opening avenues for optical materials engineering, information storage, display, and encryption, as well as advanced thermal optics and photonics.

14.
Heliyon ; 10(18): e37909, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39323832

RESUMO

Background: Chronic inflammation plays a crucial role in the pathogenesis of overweight/obesity. Nuclear receptor subfamily 2, group E, member 1 (NR2E1) is one of the nuclear receptor family proteins that play crucial roles in regulating numerous life processes. In this study, we attempted to detect NR2E1 levels in peripheral blood mononuclear cells (PBMCs) of overweight/obese people and preliminarily elucidate the regulatory role of NR2E1 in obesity-related chronic inflammation. Methods: We conducted a cross-sectional analysis of the clinical and biochemical data from 62 overweight/obese people and 70 control subjects. PBMCs of the participants were collected for detection of NR2E1 levels. PBMCs isolated from the control subjects were treated with different concentrations of palmitic acid (PA). We also transfected p-EGFP-N1-NR2E1 plasmids into PBMCs and treated them with PA, then detected TNF-α and IL-6 concentrations in the supernatant of PBMCs. Results: The NR2E1 mRNA and protein levels in overweight/obese people were both significantly higher than those in normal-BMI people (p < 0.01). NR2E1 mRNA levels in PBMCs of overweight/obese people were positively related with TC, FFA, IL-6, TNF-α (r = 0.387, 0.440, 0.610, 0.530, p < 0.01) and LDL-c (r = 0.290, p < 0.05). A similar correlation was also found between NR2E1 protein levels and these parameters. The expression of NR2E1 in PBMCs from the control subjects increased apparently with the treatment of PA in a concentration-depend manner in vitro. Overexpression of NR2E1 in PBMCs decreased TNF-α and IL-6 expression induced by PA (p < 0.01). Conclusion: NR2E1 levels are increased in overweight/obese people and have a positive relationship with TC, FFA, LDL-C, TNF-α and IL-6. Overexpression of NR2E1 could alleviate PA-induced chronic inflammation. NR2E1 may be a potential target for regulating chronic inflammation in obesity.

15.
Langmuir ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140175

RESUMO

A light-sensitive moiety, e.g., azobenzene, for the light-sensitive liposomal drug carrier has shown advantages as an advanced drug delivery system in site-specific smart therapy due to its reversible photoisomerization characteristics. In this work, a series of 4-position-cholesterol-functionalized azobenzene derivatives with 4'-position substituted pyridine, quinoline, isoquinoline, triethylamine, or ethylenediamine were synthesized, and the relationship between the molecular structure and drug release behaviors was clarified. We found that the charge and electrophilicity of substituents were two important factors (expressed as the characteristic time) that can precisely regulate the isomerization ratio in the liposomal system. There was an approximately linear correlation between the characteristic time of photoisomerization and the fitted first-order constant of photoinduced drug release rate. The photoinduced drug release could be achieved at the desired time and in an appropriate amount by tailoring the substituents at the 4'-position of azobenzene-cholesterol derivatives.

16.
Front Immunol ; 15: 1426875, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39170615

RESUMO

Background: The main challenge in diagnosing and treating ulcerative colitis (UC) has prompted this study to discover useful biomarkers and understand the underlying molecular mechanisms. Methods: In this study, transcriptomic data from intestinal mucosal biopsies underwent Robust Rank Aggregation (RRA) analysis to identify differential genes. These genes intersected with UC key genes from Weighted Gene Co-expression Network Analysis (WGCNA). Machine learning identified UC signature genes, aiding predictive model development. Validation involved external data for diagnostic, progression, and drug efficacy assessment, along with ELISA testing of clinical serum samples. Results: RRA integrative analysis identified 251 up-regulated and 211 down-regulated DEGs intersecting with key UC genes in WGCNA, yielding 212 key DEGs. Subsequently, five UC signature biomarkers were identified by machine learning based on the key DEGs-THY1, SLC6A14, ECSCR, FAP, and GPR109B. A logistic regression model incorporating these five genes was constructed. The AUC values for the model set and internal validation data were 0.995 and 0.959, respectively. Mechanistically, activation of the IL-17 signaling pathway, TNF signaling pathway, PI3K-Akt signaling pathway in UC was indicated by KEGG and GSVA analyses, which were positively correlated with the signature biomarkers. Additionally, the expression of the signature biomarkers was strongly correlated with various UC types and drug efficacy in different datasets. Notably, ECSCR was found to be upregulated in UC serum and exhibited a positive correlation with neutrophil levels in UC patients. Conclusions: THY1, SLC6A14, ECSCR, FAP, and GPR109B can serve as potential biomarkers of UC and are closely related to signaling pathways associated with UC progression. The discovery of these markers provides valuable information for understanding the molecular mechanisms of UC.


Assuntos
Biomarcadores , Colite Ulcerativa , Humanos , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/genética , Colite Ulcerativa/sangue , Colite Ulcerativa/imunologia , Perfilação da Expressão Gênica , Masculino , Feminino , Transcriptoma , Aprendizado de Máquina , Pessoa de Meia-Idade , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Adulto , Redes Reguladoras de Genes , Transdução de Sinais
17.
Asian J Androl ; 26(5): 535-543, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39107962

RESUMO

ABSTRACT: Recent evidence suggests that low-intensity extracorporeal shock wave therapy (Li-ESWT) is a promising treatment for chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS); however, its safety in pelvic organs, particularly prostate tissues and cells, remains unclear. The current study evaluates the risks of prostate cell damage or oncogenesis following the administration of Li-ESWT for prostatitis. To this end, a robust in vitro model (Cell Counting Kit-8 [CCK-8] assay, clone formation assay, cell scratch assay, lactate dehydrogenase [LDH] release assay, flow cytometry, and immunoblotting assay) was designed to examine the effects of Li-ESWT on cell proliferation, clonogenicity, migration, membrane integrity, and DNA damage. Exome sequencing of Li-ESWT-treated cells was performed to determine the risk of carcinogenesis. Furthermore, an in vivo rat model ( n = 20) was employed to assess the effects of Li-ESWT on cancer biomarkers (carcinoembryonic antigen [CEA], Ki67, proliferating cell nuclear antigen [PCNA], and gamma-H2A histone family member X, phosphorylation of the H2AX Ser-139 [ γ -H2AX]) in prostate tissue. Based on our findings, Li-ESWT promotes cellular growth and motility without inducing significant cell membrane or DNA damage or alterations. Genetic analyses did not demonstrate an increase in mutations, and no damage to prostate tissue or upregulation of cancer biomarkers was detected in vivo. This comprehensive in vitro and in vivo assessment confirms the safety of Li-ESWT in managing prostate disorders.


Assuntos
Proliferação de Células , Tratamento por Ondas de Choque Extracorpóreas , Masculino , Animais , Ratos , Tratamento por Ondas de Choque Extracorpóreas/métodos , Humanos , Próstata/patologia , Prostatite/terapia , Dano ao DNA , Ratos Sprague-Dawley , Movimento Celular , Neoplasias da Próstata/terapia
18.
Ecol Evol ; 14(7): e70067, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39076614

RESUMO

As human activities continue to expand, wildlife persistence faces escalating threats from roads. In Wolong area of Giant Panda National Park, the local giant pandas (Ailuropoda melanoleuca) are divided into two population groups along the National Highway G350 (NHG). Therefore, selecting suitable areas to help those giant pandas communicate across the NHG is necessary. In this research, we evaluated the presence of human activities and simulated their absence to analyze how they affect the giant panda's habitat in Wolong. Subsequently, based on the kernel density estimation (KDE) for giant pandas and the main human distribution locations, we selected suitable areas for the population link between the two road sections on the NHG. We simulated the absence of human activities on the two road sections to compare changes in the habitat suitability index (HSI) and connectivity value (CV) relative to their presence. We aimed to carefully select the area for future giant panda corridor plans and simulate whether eliminating human activities will significantly improve the HSI and CV of the area. Our results show that: (1) Human activities presence has led to subtle changes in the landscape pattern of suitable habitats and a decrease in Wolong by 78.76 km2 compared to their absence. (2) Human activities presence significantly reduced HSI and CV in the 1000 m buffer along the NHG compared to their absence. (3) The HSI and CV of the 1000 m buffer in the simulated absence of human activities for the two road sections were significantly higher than their presence. This research identified the optimal road section for crossing the NHG to link giant panda population groups and habitats in Wolong. These insights are significant for formulating conservation decisions and corridor plans and for promoting wildlife conservation in reserves amid high levels of human activity.

19.
Front Neurosci ; 18: 1404903, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39077428

RESUMO

Introduction: We recently showed that sub-kilohertz electrical stimulation of the afferent somata in the dorsal root ganglia (DRG) reversibly blocks afferent transmission. Here, we further investigated whether similar conduction block can be achieved by stimulating the nerve trunk with electrical peripheral nerve stimulation (ePNS). Methods: We explored the mechanisms and parameters of conduction block by ePNS via ex vivo single-fiber recordings from two somatic (sciatic and saphenous) and one autonomic (vagal) nerves harvested from mice. Action potentials were evoked on one end of the nerve and recorded on the other end from teased nerve filaments, i.e., single-fiber recordings. ePNS was delivered in the middle of the nerve trunk using a glass suction electrode at frequencies of 5, 10, 50, 100, 500, and 1000 Hz. Results: Suprathreshold ePNS reversibly blocks axonal neural transmission of both thinly myelinated Aδ-fiber axons and unmyelinated C-fiber axons. ePNS leads to a progressive decrease in conduction velocity (CV) until transmission blockage, suggesting activity-dependent conduction slowing. The blocking efficiency is dependent on the axonal conduction velocity, with Aδ-fibers efficiently blocked by 50-1000 Hz stimulation and C-fibers blocked by 10-50 Hz. The corresponding NEURON simulation of action potential transmission indicates that the disrupted transmembrane sodium and potassium concentration gradients underly the transmission block by the ePNS. Discussion: The current study provides direct evidence of reversible Aδ- and C-fiber transmission blockage by low-frequency (<100 Hz) electrical stimulation of the nerve trunk, a previously overlooked mechanism that can be harnessed to enhance the therapeutic effect of ePNS in treating neurological disorders.

20.
J Nutr ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39053607

RESUMO

BACKGROUND: Fried food has increased in popularity worldwide. However, deep frying can increase the production of peroxidative toxins in food, which might be harmful to fetal development. The antioxidative effect of vitamin D3 (VD3) has been reported previously. OBJECTIVES: This study aimed to explore how maternal VD3 supplementation in an oxidized-oil diet during gestation affects fetal antioxidative ability and development. METHODS: Pregnant mice were randomly assigned into 3 groups: Control group (diet with fresh soybean oil), OSO group [diet with oxidized soybean oil (OSO)], and OSOV group (diet with OSO and 10,000 IU/Kg VD3). Mice were fed with the corresponding diet during gestation. On day 16.5 of gestation, the placenta and fetus were harvested to analyze antioxidative status. RESULTS: Maternal oxidized-oil diet during gestation significantly reduced placental vessel abundance, labyrinth zone area, and fetal body weight. However, dietary VD3 supplementation prevented these negative effects of oxidized-oil diet. Maternal intake of oxidized-oil diet increased serum concentrations of malondialdehyde, total-nitric oxide synthase, and inducible nitric oxide synthase, whereas VD3 supplementation showed a protection effect on it. Additionally, maternal VD3 supplementation increased the levels of antioxidative enzymes and the nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2), thereby protecting placenta and fetus from apoptosis and oxidative stress caused by an oxidized-oil diet. The gene expression and protein levels of a fatty acid transporter solute carrier family 27 member 1 in the fetal liver were increased by maternal VD3 supplementation under oxidized-oil diet. Notably, NRF2 could be co-immunoprecipitated with the VD receptor in the placenta. CONCLUSIONS: Maternal VD3 supplementation could protect fetus from oxidized-oil diet induced developmental impairment by alleviating oxidative stress in the placenta and fetus through the VD receptor/NRF2 pathway, at least partially. Thus, ensuring adequate levels of VD3 through supplementation is often critical during pregnancy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...