Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(32): eado1739, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39121223

RESUMO

During lagging strand chromatin replication, multiple Okazaki fragments (OFs) require processing and nucleosome assembly, but the mechanisms linking these processes remain unclear. Here, using transmission electron microscopy and rapid degradation of DNA ligase Cdc9, we observed flap structures accumulated on lagging strands, controlled by both Pol δ's strand displacement activity and Fen1's nuclease digestion. The distance between neighboring flap structures exhibits a regular pattern, indicative of matured OF length. While fen1Δ or enhanced strand displacement activities by polymerase δ (Pol δ; pol3exo-) minimally affect inter-flap distance, mutants affecting replication-coupled nucleosome assembly, such as cac1Δ and mcm2-3A, do significantly alter it. Deletion of Pol32, a subunit of DNA Pol δ, significantly increases this distance. Mechanistically, Pol32 binds to histone H3-H4 and is critical for nucleosome assembly on the lagging strand. Together, we propose that Pol32 establishes a connection between nucleosome assembly and the processing of OFs on lagging strands.


Assuntos
DNA Polimerase III , DNA , Histonas , Nucleossomos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Nucleossomos/metabolismo , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , DNA Polimerase III/metabolismo , DNA Polimerase III/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , DNA/metabolismo , Replicação do DNA , Ligação Proteica , DNA Polimerase Dirigida por DNA
2.
Nature ; 627(8005): 890-897, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448592

RESUMO

In eukaryotes, DNA compacts into chromatin through nucleosomes1,2. Replication of the eukaryotic genome must be coupled to the transmission of the epigenome encoded in the chromatin3,4. Here we report cryo-electron microscopy structures of yeast (Saccharomyces cerevisiae) replisomes associated with the FACT (facilitates chromatin transactions) complex (comprising Spt16 and Pob3) and an evicted histone hexamer. In these structures, FACT is positioned at the front end of the replisome by engaging with the parental DNA duplex to capture the histones through the middle domain and the acidic carboxyl-terminal domain of Spt16. The H2A-H2B dimer chaperoned by the carboxyl-terminal domain of Spt16 is stably tethered to the H3-H4 tetramer, while the vacant H2A-H2B site is occupied by the histone-binding domain of Mcm2. The Mcm2 histone-binding domain wraps around the DNA-binding surface of one H3-H4 dimer and extends across the tetramerization interface of the H3-H4 tetramer to the binding site of Spt16 middle domain before becoming disordered. This arrangement leaves the remaining DNA-binding surface of the other H3-H4 dimer exposed to additional interactions for further processing. The Mcm2 histone-binding domain and its downstream linker region are nested on top of Tof1, relocating the parental histones to the replisome front for transfer to the newly synthesized lagging-strand DNA. Our findings offer crucial structural insights into the mechanism of replication-coupled histone recycling for maintaining epigenetic inheritance.


Assuntos
Cromatina , Replicação do DNA , Epistasia Genética , Histonas , Saccharomyces cerevisiae , Sítios de Ligação , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Cromatina/ultraestrutura , Microscopia Crioeletrônica , Replicação do DNA/genética , DNA Fúngico/biossíntese , DNA Fúngico/química , DNA Fúngico/metabolismo , DNA Fúngico/ultraestrutura , Epistasia Genética/genética , Histonas/química , Histonas/metabolismo , Histonas/ultraestrutura , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Complexos Multienzimáticos/ultraestrutura , Nucleossomos/química , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura
3.
iScience ; 27(1): 108537, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38213626

RESUMO

The differentiation of embryonic stem cells (ESCs) begins with the transition from the naive to the primed state. The formative state was recently established as a critical intermediate between the two states. Here, we demonstrate the role of the histone chaperone FACT in regulating the naive-to-formative transition. We found that the Q265K mutation in the FACT subunit SSRP1 increased the binding of FACT to histone H3-H4, impaired nucleosome disassembly in vitro, and reduced the turnover of FACT on chromatin in vivo. Strikingly, mouse ESCs harboring this mutation showed elevated naive-to-formative transition. Mechanistically, the SSRP1-Q265K mutation enriched FACT at the enhancers of formative-specific genes to increase targeted gene expression. Together, these findings suggest that the turnover of FACT on chromatin is crucial for regulating the enhancers of formative-specific genes, thereby mediating the naive-to-formative transition. This study highlights the significance of FACT in fine-tuning cell fate transition during early development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...