Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 392
Filtrar
1.
Biomed Chromatogr ; : e6024, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39379043

RESUMO

The DNA-dependent protein kinase (DNA-PK) is an abundant nuclear protein that mediates DNA double-strand break repair by nonhomologous end joining (NHEJ). As such, DNA-PK is critical for V(D)J recombination in lymphocytes and for survival in cells exposed to ionizing radiation and clastogens. Peposertib (M3814) is a small molecule DNA-PK inhibitor currently in preclinical and clinical development for cancer treatment. We have developed a high-performance liquid chromatography-mass spectrometry method for quantitating peposertib and its metabolite in 0.1 mL human plasma. After MTBE liquid-liquid extraction, chromatographic separation was achieved with a Phenomenex Synergi polar reverse phase (4 µm, 2 × 50 mm) column and a gradient of 0.1% formic acid in acetonitrile and water over an 8 min run time. Mass spectrometric detection was performed on an ABI SCIEX 4000 with electrospray, positive-mode ionization. The assay was linear from 10 to 3000 ng/mL for peposertib and 1-300 ng/mL for the metabolite and proved to be both accurate (97.3%-103.7%) and precise (<8.9%CV) fulfilling criteria from the Food and Drug Administration (FDA) guidance on bioanalytical method validation. This liquid chromatography-tandem mass spectroscopy (LC-MS/MS) assay will support several ongoing clinical studies by defining peposertib pharmacokinetics.

2.
Eur Radiol ; 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39414655

RESUMO

OBJECTIVES: We evaluated the value of dual-energy computed tomography (DECT) parameters derived from pancreatic ductal adenocarcinoma (PDAC) to discriminate between high- and low-grade tumors and predict overall survival (OS) in patients. METHODS: Data were retrospectively collected from 169 consecutive patients with pathologically confirmed PDAC who underwent third-generation dual-source DECT enhanced dual-phase scanning before surgery between January 2017 and March 2023. Patients with prior treatments, other malignancies, small tumors, or poor-quality scans were excluded. Two radiologists evaluated three clinical and seven radiological features and measured sixteen DECT-derived parameters. Univariate and multivariate analyses were applied to select independent predictors. A prediction model and a corresponding nomogram were developed, and the area under the curve (AUC), calibration, and clinical applicability were assessed. The correlations between factors and OS were evaluated using Kaplan-Meier survival and Cox regression analyses. RESULTS: One hundred sixty-nine patients were randomly divided into training (n = 118) and validation (n = 51) cohorts, among which 43 (36.4%) and 19 (37.3%) had high-grade PDAC confirmed by pathology, respectively. The vascular invasion, normalized iodine concentration in the venous phase, and effective atomic number in the venous phase were independent predictors for histological grading. A nomogram was constructed to predict the risk of high-grade tumors in PDAC, with AUCs of 0.887 and 0.844 in the training and validation cohorts, respectively. The nomogram exhibited good calibration and was more beneficial than a single parameter in both cohorts. Pathological- and nomoscore-predicted high-grade PDACs were associated with poor OS (all p < 0.05). CONCLUSIONS: The nomogram, which combines DECT parameters and radiological features, can predict the histological grade and OS in patients with PDAC before surgery. KEY POINTS: Question Preoperative determination of histological grade in PDAC is crucial for guiding treatment, yet current methods are invasive and limited. Findings A DECT-based nomogram combining vascular invasion, normalized iodine concentration, and effective atomic number accurately predicts histological grade and OS in PDAC patients. Clinical relevance The DECT-based nomogram is a reliable, non-invasive tool for predicting histological grade and OS in PDAC. It provides essential information to guide personalized treatment strategies, potentially improving patient management and outcomes.

3.
J Sci Food Agric ; 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39412364

RESUMO

BACKGROUND: Postweaning intestinal damage in piglets is a challenging issue in the livestock industry. Short-chain fatty acids (SCFAs) are important metabolic products of the gut microbiota and are widely recognized for their role in maintaining normal colonic function and regulating the intestinal immune system. However, the effects of branched short-chain fatty acid (BSCFA) isobutyrate on intestinal health remain largely unknown. This study aims to explore the potential of isobutyrate for alleviating postweaning intestinal damage. RESULTS: This study indicates that isobutyrate can alleviate diarrhea in weaned piglets, enhance their growth performance, and optimize the gut microbiota. This is mainly achieved through increasing the relative abundance of probiotic bacteria such as Lactobacillus, Megasphaera, and Prevotellaceae_UCG-003, while concurrently reducing the relative abundance of potentially harmful bacteria such as Clostridium_sensu_stricto-1 and Escherichia-Shigella. It promotes the production of SCFAs, including acetate, isobutyrate, and butyrate. Furthermore, it activates G-protein-coupled receptors (GPR43/109A), inhibits the TLR4/MyD88 signaling pathway, strengthens the intestinal barrier function, and regulates the expression of related cytokines. CONCLUSION: In summary, exogenous isobutyrate can be considered a promising feed additive for improving the intestinal microbiota and regulating intestinal health in piglets. © 2024 Society of Chemical Industry.

4.
Cell Stem Cell ; 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39442524

RESUMO

Psychological stress is often linked to depression and can also impact the immune system, illustrating the interconnectedness of mental health and immune function. Hematopoietic stem cells (HSCs) can directly sense neuroendocrine signals in bone marrow and play a fundamental role in the maintenance of immune homeostasis. However, it is unclear how psychological stress impacts HSCs in depression. Here, we report that neuroendocrine factor arginine vasopressin (AVP) promotes myeloid-biased HSC differentiation by activating neutrophils. AVP administration increases neutrophil and Ly6Chi monocyte production by triggering HSCs that rely on intrinsic S100A9 in mice. When stimulated with AVP, neutrophils return to the bone marrow and release interleukin 36G (IL-36G), which interacts with interleukin 1 receptor-like 2 (IL-1RL2) on HSCs to produce neutrophils with high Elane expression that infiltrate the brain and induce neuroinflammation. Together, these findings define HSCs as a relay between psychological stress and myelopoiesis and identify the IL-36G-IL-1RL2 axis as a potential target for depression therapy.

5.
Transl Oncol ; 50: 102139, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39395273

RESUMO

LncRNAs affect tumorigenesis, and although the genesis, regulation and physiological mechanism of lncRNAs in gastric cancer (GC) have been reported, the research of lncRNAs still have a lot of value. Through comprehensive bioinformatics analysis, we screened the candidate lncRNA WAC-AS1(WAC-AS1). We analyzed WAC-AS1 expression in GC related tissues and cells using qRT-PCR. WAC-AS1's impact on GC growth and metastasis was investigated. LncRNA WC-AS-miR-204-5p-HOXC8 interaction was established through dual-luciferase reporter, FISH, RIP and RNA pull-down assay. We observed substantial upregulation in WAC-AS1 expression in cells and tissues of GC. WAC-AS1 through miR-204-5p/HOXC8 axis promoted GC proliferation, invasion, and migration. WAC-AS1 plays a cancer-promoting role for promoting the progression of GC.

6.
Sci Rep ; 14(1): 24361, 2024 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-39420122

RESUMO

Prior research show that relative deprivation can decrease individuals' psychological well-being. However, the underlying mechanism between relative deprivation and psychological well-being remains unclear. To explore the mediating effects of self-efficacy and self-control on the relationship between relative deprivation and psychological well-being. 426 undergraduate students submitted the online survey that assessed their psychological well-being, relative deprivation, self-efficacy and self-control. Students experienced high levels of psychological well-being, moderate to high levels of relative deprivation and moderate levels of self-efficacy and self-control. Parallel mediators of self-efficacy and self-control on the relationship between relative deprivation and psychological well-being were significant (each p < 0.01). This study explores the underlying mechanism between relative deprivation and psychological well-being by identifying the parallel mediators of self-efficacy and self-control. Effective interventions should be taken to alleviate students' relative deprivation and promote their self-efficacy, self-control and psychological well-being during future pandemics.


Assuntos
COVID-19 , Autoeficácia , Autocontrole , Estudantes , Humanos , COVID-19/psicologia , COVID-19/epidemiologia , Masculino , Feminino , Estudantes/psicologia , Adulto Jovem , Autocontrole/psicologia , Inquéritos e Questionários , Saúde Mental , Adulto , Pandemias , SARS-CoV-2 , Universidades , Adolescente , Bem-Estar Psicológico
7.
J Environ Manage ; 371: 123092, 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39476679

RESUMO

To achieve the ambitious carbon neutrality goal by 2060, the Chinese government has implemented a series of carbon neutrality policies. These policy documents are pivotal in facilitating the examination of policy substance, the scrutiny of policy evolution, and the dissection of the policy instruments involved. This study develops an analytical framework for assessing carbon neutrality through policy documents, applying text mining and network analysis to probe the intricacies of policy topics, interagency collaboration, and diffusion dynamics. This research aims to delineate and expound upon the strategic paradigms employed by the Chinese government in its quest for carbon neutrality. The findings reveal a constellation of eleven policy topics, with "green" and "low carbon" being key aspects of each. The policy collaboration network has a density of 0.593, and the National Development and Reform Commission (NDRC)'s high average weighted degree of 14.6 highlights its crucial role in leading and coordinating these policies. In terms of diffusion dynamics, the green energy transition topic has a diffusion speed of 0.967 and a strength of 49, indicating its importance to the Chinese government. On a practical level, the findings offer policy-makers concrete, actionable recommendations to refine policy design and enhance implementation effectiveness. Theoretically, this study advances the scientific understanding of policy dynamics by proposing a novel analytical framework that integrates multiple dimensions of policy analysis, contributing to the methodological development of policy research.

8.
Front Immunol ; 15: 1474770, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39346906

RESUMO

This review critically evaluates the substantial role of exercise in enhancing cancer prevention, treatment, and patient quality of life. It conclusively demonstrates that regular physical activity not only reduces cancer risk but also significantly mitigates side effects of cancer therapies. The key findings include notable improvements in fatigue management, reduction of cachexia symptoms, and enhancement of cognitive functions. Importantly, the review elucidates the profound impact of exercise on tumor behavior, modulation of immune responses, and optimization of metabolic pathways, advocating for the integration of exercise into standard oncological care protocols. This refined abstract encourages further exploration and application of exercise as a pivotal element of cancer management.


Assuntos
Exercício Físico , Neoplasias , Qualidade de Vida , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Exercício Físico/fisiologia , Terapia por Exercício , Caquexia/etiologia , Caquexia/terapia , Animais , Fadiga/etiologia
9.
Adv Sci (Weinh) ; 11(38): e2309752, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39119903

RESUMO

The transition from acute kidney injury (AKI) to chronic kidney disease (CKD) is a critical clinical issue. Although previous studies have suggested macrophages as a key player in promoting inflammation and fibrosis during this transition, the heterogeneity and dynamic characterization of macrophages are still poorly understood. Here, we used integrated single-cell RNA sequencing and spatial transcriptomic to characterize the spatiotemporal heterogeneity of macrophages in murine AKI-to-CKD model of unilateral ischemia-reperfusion injury. A marked increase in macrophage infiltration at day 1 was followed by a second peak at day 14 post AKI. Spatiotemporal profiling revealed that injured tubules and macrophages co-localized early after AKI, whereas in late chronic stages had spatial proximity to fibroblasts. Further pseudotime analysis revealed two distinct lineages of macrophages in this transition: renal resident macrophages differentiated into the pro-repair subsets, whereas infiltrating monocyte-derived macrophages contributed to chronic inflammation and fibrosis. A novel macrophage subset, extracellular matrix remodeling-associated macrophages (EAMs) originating from monocytes, linked to renal fibrogenesis and communicated with fibroblasts via insulin-like growth factors (IGF) signalling. In sum, our study identified the spatiotemporal dynamics of macrophage heterogeneity with a unique subset of EAMs in AKI-to-CKD transition, which could be a potential therapeutic target for preventing CKD development.


Assuntos
Injúria Renal Aguda , Modelos Animais de Doenças , Matriz Extracelular , Macrófagos , Insuficiência Renal Crônica , Análise de Célula Única , Animais , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Macrófagos/metabolismo , Camundongos , Análise de Célula Única/métodos , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Matriz Extracelular/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fibrose/metabolismo , Progressão da Doença
10.
NPJ Biofilms Microbiomes ; 10(1): 72, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39191812

RESUMO

Cophylogeny has been identified between gut bacteria and their animal host and is highly relevant to host health, but little research has extended to gut bacteriophages. Here we use bee model to investigate host specificity and cophylogeny in the "animal-gut bacteria-phage" tripartite system. Through metagenomic sequencing upon different bee species, the gut phageome revealed a more variable composition than the gut bacteriome. Nevertheless, the bacteriome and the phageome showed a significant association of their dissimilarity matrices, indicating a reciprocal interaction between the two kinds of communities. Most of the gut phages were host generalist at the viral cluster level but host specialist at the viral OTU level. While the dominant gut bacteria Gilliamella and Snodgrassella exhibited matched phylogeny with bee hosts, most of their phages showed a diminished level of cophylogeny. The evolutionary rates of the bee, the gut bacteria and the gut phages showed a remarkably increasing trend, including synonymous and non-synonymous substitution and gene content variation. For all of the three codiversified tripartite members, however, their genes under positive selection and genes involving gain/loss during evolution simultaneously enriched the functions into metabolism of nutrients, therefore highlighting the tripartite coevolution that results in an enhanced ecological fitness for the whole holobiont.


Assuntos
Bactérias , Bacteriófagos , Microbioma Gastrointestinal , Especificidade de Hospedeiro , Filogenia , Animais , Bacteriófagos/genética , Bacteriófagos/fisiologia , Abelhas/virologia , Abelhas/microbiologia , Bactérias/virologia , Bactérias/genética , Bactérias/classificação , Metagenômica/métodos , Metagenoma
11.
Artigo em Inglês | MEDLINE | ID: mdl-39041274

RESUMO

INTRODUCTION: Increasing evidence indicates that microRNAs (miRNAs) play a crucial role in modulating tumor growth. This study is centered on investigating the contribution of miR-25 to the progression of Renal Cell Carcinoma (RCC). METHODS: The investigators examined the expression levels of miR-25 and ADAMTS16 in RCC samples and cell lines. The association between miR-25 and ADAMTS16 was validated via a luciferase reporter assay. Cell viability, apoptosis, migration, and invasion were evaluated utilizing CCK-8 and flow cytometry techniques, while the expression levels of ADAMTS16, ß-catenin, GSK-3ß, and p-GSK-3ß were assessed through western blot analysis. RESULTS: The investigation revealed elevated expression levels of miR-25 in RCC tissues. Subsequently, ADAMTS16 was identified as a target of miR-25. Increased miR-25 levels were associated with decreased expression of ADAMTS16, resulting in enhanced cell viability and diminished apoptosis. Conversely, inhibition of miR-25 led to decreased cell viability, proliferation, and migration. Additionally, the researchers observed that miR-25 triggered the phosphorylation of GSK-3ß and ß-catenin while leaving the total GSK-3ß level unaffected. CONCLUSION: This study suggests that miR-25 regulates the expression of ADAMTS16 through the Wnt/ß-catenin signaling pathway, providing new insights into the cause and potential treatment of RCC.

12.
ACS Biomater Sci Eng ; 10(8): 5252-5264, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39038263

RESUMO

Developing a microenvironment-responsive drug delivery system (DDS) for the gastrointestinal system is of great interest to enhance drug efficiency and minimize side effects. Unfortunately, the rapid-flowing digestive juice in the gastrointestinal tract and the continuous contraction and peristalsis of the gastrointestinal tract muscle accelerate the elimination of drug carriers. In this study, a boric hydroxyl-modified mesoporous Mg(OH)2 drug carrier is prepared to prolong the drug retention time. Results show that the newly designed DDS presents high biocompatibility and can immediately turn the free polyhydric alcohol molecules into a gelation form. The in situ-formed gelation network presents high viscosity and can prevent the drug carriers from being washed away by the digestive juice in the gastrointestinal tract.


Assuntos
Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Trato Gastrointestinal , Géis , Trato Gastrointestinal/metabolismo , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Géis/química , Humanos , Viscosidade , Animais
13.
Arch Dermatol Res ; 316(6): 314, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822909

RESUMO

Herpes zoster (HZ) is rare in healthy children, but more prevalent in those with leukemia. Optimal timing of chemotherapy reinitiation after HZ treatment is challenging because chemotherapy suppresses immunity and increases risk of HZ relapse. We aimed to optimize the timing of chemotherapy reinitiation after HZ therapy in children with leukemia. The study included 31 children with acute leukemia and HZ infection. General information, clinical symptoms, laboratory test results, duration of HZ treatment, and prognosis were compared with those of children with leukemia alone. Correlation analysis was performed for 20 children who restarted chemotherapy after HZ treatment. Of 31 children with leukemia and HZ, 67.74% had lesions at multiple sites. The median time from chemotherapy initiation to HZ onset was 14.1 (1.5-29.5) months. Among 27 children included in the follow-up, there was one case of HZ relapse. After excluding children who did not continue chemotherapy after HZ treatment, the median interval between completion of HZ therapy and chemotherapy reinitiation in the remaining 20 children was 8.00 (- 3 to 27) days. Lymphocyte counts (LY#) on restarting chemotherapy correlated inversely with HZ lesion healing time (p < 0.05). LY# at the time of HZ onset were lower than those pre- and post-onset, and lower than those in the control group (p < 0.05). In conclusion, children with leukemia have a good HZ prognosis, but an increased risk of HZ recurrence. LY# at the time of chemotherapy reinitiation may be a useful indicator for selecting the optimal interval between antiviral therapy completion and chemotherapy reinitiation.


Assuntos
Antivirais , Herpes Zoster , Leucemia , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Antivirais/uso terapêutico , Antivirais/administração & dosagem , Herpes Zoster/tratamento farmacológico , Leucemia/tratamento farmacológico , Leucemia/complicações , Contagem de Linfócitos , Prognóstico , Estudos Retrospectivos , Fatores de Tempo
14.
Anal Chem ; 96(24): 9944-9952, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38843071

RESUMO

Label-free photoelectrochemical sensors have the advantages of high sensitivity and a simple electrode structure. However, its performance is greatly limited due to the photoactive materials' weak photoactivity and poor stability. Herein, a robust homogeneous photoelectrochemical (PEC) aptasensor has been constructed for atrazine (ATZ) based on photoetching (PE) surface oxygen vacancies (Ov)-enriched Bismuth vanadate (BiVO4) (PE-BVO). The surface of the Ov improves the carrier separation ability of BiVO4, thus providing a superior signal substrate for the sensor. A thiol molecular layer self-assembled on PE-BVO acts as a blocker, while 2D graphene acts as a signal-on probe after release from the aptamer-graphene complex. The fabricated sensor has a wide linear detection range of 0.5 pM to 10.0 nM and a low detection limit of 0.34 pM (S/N = 3) for ATZ. In addition, it can efficiently work in a wide pH range (3-13) and high ionic strength (∼6 M Na+), which provides promising opportunities for detecting environmental pollutants under complex conditions.

15.
Anim Sci J ; 95(1): e13951, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38703069

RESUMO

Intramuscular fat (IMF) is a crucial determinant of meat quality and is influenced by various regulatory factors. Despite the growing recognition of the important role of long noncoding RNAs (lncRNAs) in IMF deposition, the mechanisms underlying buffalo IMF deposition remain poorly understood. In this study, we identified and characterized a lncRNA, lncFABP4, which is transcribed from the antisense strand of fatty acid-binding protein 4 (FABP4). lncFABP4 inhibited cell proliferation in buffalo intramuscular preadipocytes. Moreover, lncFABP4 significantly increased intramuscular preadipocyte differentiation, as indicated by an increase in the expression of the adipogenic markers peroxisome proliferator-activated receptor gamma (PPARG), CCAAT enhancer binding protein alpha (C/EBPα), and FABP4. Mechanistically, lncFABP4 was found to have the potential to regulate downstream gene expression by participating in protein-protein interaction pathways. These findings contribute to further understanding of the intricate mechanisms through which lncRNAs modulate intramuscular adipogenesis in buffaloes.


Assuntos
Adipócitos , Adipogenia , Búfalos , Diferenciação Celular , Proliferação de Células , Proteínas de Ligação a Ácido Graxo , PPAR gama , RNA Longo não Codificante , Animais , Búfalos/genética , Búfalos/metabolismo , Adipogenia/genética , Adipócitos/metabolismo , Adipócitos/citologia , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Diferenciação Celular/genética , PPAR gama/metabolismo , PPAR gama/genética , Expressão Gênica , Células Cultivadas , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Qualidade dos Alimentos
16.
Viruses ; 16(5)2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38793564

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is a pathogen that causes severe abortions in sows and high piglet mortality, resulting in huge economic losses to the pig industry worldwide. The emerging and novel PRRSV isolates are clinically and biologically important, as there are likely recombination and pathogenic differences among PRRSV genomes. Furthermore, the NADC34-like strain has become a major epidemic strain in some parts of China, but the characterization and pathogenicity of the latest strain in Inner Mongolia have not been reported in detail. In this study, an NADC34-like strain (CHNMGKL1-2304) from Tongliao City, Inner Mongolia was successfully isolated and characterized, and confirmed the pathogenicity in pigs. The phylogenetic tree showed that this strain belonged to sublineage 1.5 and had high homology with the strain JS2021NADC34. There is no recombination between CHNMGKL1-2304 and any other domestic strains. Animal experiments show that the CHNMGKL1-2304 strain is moderately virulent to piglets, which show persistent fever, weight loss and high morbidity but no mortality. The presence of PRRSV nucleic acids was detected in both blood, tissues, nasal and fecal swabs. In addition, obvious pathological changes and positive signals were observed in lung, lymph node, liver and spleen tissues when subjected to hematoxylin-eosin (HE) staining and immunohistochemistry (IHC). This report can provide a basis for epidemiological investigations and subsequent studies of PRRSV.


Assuntos
Genoma Viral , Filogenia , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Suínos , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Vírus da Síndrome Respiratória e Reprodutiva Suína/isolamento & purificação , Vírus da Síndrome Respiratória e Reprodutiva Suína/classificação , China , Síndrome Respiratória e Reprodutiva Suína/virologia , Síndrome Respiratória e Reprodutiva Suína/patologia , Virulência , Evolução Molecular
17.
Biomed Chromatogr ; 38(7): e5903, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38783541

RESUMO

To support a phase 1 trial in patients with lymphomas, we developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for tazemetostat quantitation in 20 µL of human plasma. After protein precipitation, chromatographic separation employed a Kinetex C18 column and a gradient of 0.1% formic acid in both water and acetonitrile, during a 3-min run time. Detection was achieved using a SCIEX 6500+ tandem mass spectrometer with electrospray positive-mode ionization. Validation was based on the latest Food and Drug Administration guidance. With a stable isotopic internal standard, the assay was linear within the range of 10-5000 ng/mL and proved to be accurate (91.9%-103.7%) and precise (<4.4% imprecision). Recovery varied between 93.3% and 121.1%, and matrix effect ranged from -25.5% to -4.9%. Hemolysis, lipemia, and dilution did not impact quantitation. Plasma stability was confirmed after three freeze-thaw cycles, 24 h at room temperature, and 4 months at -80°C. Incurred sample reanalysis yielded 94.4% samples within 20% difference (n = 36). External validation showed a mean bias of -11.1%. Pharmacokinetic (PK) data obtained from three patients suggested variable concentration time profiles, warranting collection of further data. The assay proved to be suitable for tazemetostat quantitation in human plasma and will support clinical studies by defining tazemetostat PKs.


Assuntos
Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Reprodutibilidade dos Testes , Cromatografia Líquida/métodos , Estabilidade de Medicamentos , Modelos Lineares , Sensibilidade e Especificidade
18.
Kidney Int ; 106(1): 50-66, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38697478

RESUMO

Retinoic acid receptor responder protein-1 (RARRES1) is a podocyte-enriched transmembrane protein whose increased expression correlates with human glomerular disease progression. RARRES1 promotes podocytopenia and glomerulosclerosis via p53-mediated podocyte apoptosis. Importantly, the cytopathic actions of RARRES1 are entirely dependent on its proteolytic cleavage into a soluble protein (sRARRES1) and subsequent podocyte uptake by endocytosis, as a cleavage mutant RARRES1 exerted no effects in vitro or in vivo. As RARRES1 expression is upregulated in human glomerular diseases, here we investigated the functional consequence of podocyte-specific overexpression of RARRES1 in mice in the experimental focal segmental glomerulosclerosis and diabetic kidney disease. We also examined the effects of long-term RARRES1 overexpression on slowly developing aging-induced kidney injury. As anticipated, the induction of podocyte overexpression of RARRES1 (Pod-RARRES1WT) significantly worsened glomerular injuries and worsened kidney function in all three models, while overexpression of RARRES1 cleavage mutant (Pod-RARRES1MT) did not. Remarkably, direct uptake of sRARRES1 was also seen in proximal tubules of injured Pod-RARRES1WT mice and associated with exacerbated tubular injuries, vacuolation, and lipid accumulation. Single-cell RNA sequence analysis of mouse kidneys demonstrated RARRES1 led to a marked deregulation of lipid metabolism in proximal tubule subsets. We further identified matrix metalloproteinase 23 (MMP23) as a highly podocyte-specific metalloproteinase and responsible for RARRES1 cleavage in disease settings, as adeno-associated virus 9-mediated knockdown of MMP23 abrogated sRARRES1 uptake in tubular cells in vivo. Thus, our study delineates a previously unrecognized mechanism by which a podocyte-derived protein directly facilitates podocyte and tubular injury in glomerular diseases and suggests that podocyte-specific functions of RARRES1 and MMP23 may be targeted to ameliorate glomerular disease progression in vivo.


Assuntos
Nefropatias Diabéticas , Progressão da Doença , Glomerulosclerose Segmentar e Focal , Túbulos Renais Proximais , Podócitos , Animais , Humanos , Masculino , Camundongos , Apoptose , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/etiologia , Modelos Animais de Doenças , Endocitose , Glomerulosclerose Segmentar e Focal/patologia , Glomerulosclerose Segmentar e Focal/metabolismo , Glomerulosclerose Segmentar e Focal/genética , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Podócitos/metabolismo , Podócitos/patologia
20.
J Anim Sci Biotechnol ; 15(1): 56, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38584279

RESUMO

BACKGROUND: Cold stress has negative effects on the growth and health of mammals, and has become a factor restricting livestock development at high latitudes and on plateaus. The gut-liver axis is central to energy metabolism, and the mechanisms by which it regulates host energy metabolism at cold temperatures have rarely been illustrated. In this study, we evaluated the status of glycolipid metabolism and oxidative stress in pigs based on the gut-liver axis and propose that AMP-activated protein kinase (AMPK) is a key target for alleviating energy stress at cold temperatures by dietary fat supplementation. RESULTS: Dietary fat supplementation alleviated the negative effects of cold temperatures on growth performance and digestive enzymes, while hormonal homeostasis was also restored. Moreover, cold temperature exposure increased glucose transport in the jejunum. In contrast, we observed abnormalities in lipid metabolism, which was characterized by the accumulation of bile acids in the ileum and plasma. In addition, the results of the ileal metabolomic analysis were consistent with the energy metabolism measurements in the jejunum, and dietary fat supplementation increased the activity of the mitochondrial respiratory chain and lipid metabolism. As the central nexus of energy metabolism, the state of glycolipid metabolism and oxidative stress in the liver are inconsistent with that in the small intestine. Specifically, we found that cold temperature exposure increased glucose transport in the liver, which fully validates the idea that hormones can act on the liver to regulate glucose output. Additionally, dietary fat supplementation inhibited glucose transport and glycolysis, but increased gluconeogenesis, bile acid cycling, and lipid metabolism. Sustained activation of AMPK, which an energy receptor and regulator, leads to oxidative stress and apoptosis in the liver; dietary fat supplementation alleviates energy stress by reducing AMPK phosphorylation. CONCLUSIONS: Cold stress reduced the growth performance and aggravated glycolipid metabolism disorders and oxidative stress damage in pigs. Dietary fat supplementation improved growth performance and alleviated cold temperature-induced energy stress through AMPK-mediated mitochondrial homeostasis. In this study, we highlight the importance of AMPK in dietary fat supplementation-mediated alleviation of host energy stress in response to environmental changes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...