Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Cell Biosci ; 14(1): 81, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886783

RESUMO

BACKGROUND: Histone ubiquitination modification is emerging as a critical epigenetic mechanism involved in a range of biological processes. In vitro reconstitution of ubiquitinated nucleosomes is pivotal for elucidating the influence of histone ubiquitination on chromatin dynamics. RESULTS: In this study, we introduce a Non-Denatured Histone Octamer Ubiquitylation (NDHOU) approach for generating ubiquitin or ubiquitin-like modified histone octamers. The method entails the co-expression and purification of histone octamers, followed by their chemical cross-linking to ubiquitin using 1,3-dibromoacetone. We demonstrate that nucleosomes reconstituted with these octamers display a high degree of homogeneity, rendering them highly compatible with in vitro biochemical assays. These ubiquitinated nucleosomes mimic physiological substrates in function and structure. Additionally, we have extended this method to cross-linking various histone octamers and three types of ubiquitin-like proteins. CONCLUSIONS: Overall, our findings offer an efficient strategy for producing ubiquitinated nucleosomes, advancing biochemical and biophysical studies in the field of chromatin biology.

2.
Viruses ; 16(5)2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38793551

RESUMO

Epstein-Barr Virus (EBV) is closely linked to nasopharyngeal carcinoma (NPC), notably prevalent in southern China. Although type II latency of EBV plays a crucial role in the development of NPC, some lytic genes and intermittent reactivation are also critical for viral propagation and tumor progression. Since T cell-mediated immunity is effective in targeted killing of EBV-positive cells, it is important to identify EBV-derived peptides presented by highly prevalent human leukocyte antigen class I (HLA-I) molecules throughout the EBV life cycle. Here, we constructed an EBV-positive NPC cell model to evaluate the presentation of EBV lytic phase peptides on streptavidin-tagged specific HLA-I molecules. Utilizing a mass spectrometry (LC-MS/MS)-based immunopeptidomic approach, we characterized eleven novel EBV peptides as well as two previously identified peptides. Furthermore, we determined these peptides were immunogenic and could stimulate PBMCs from EBV VCA/NA-IgA positive donors in an NPC endemic southern Chinese population. Overall, this work demonstrates that highly prevalent HLA-I-specific EBV peptides can be captured and functionally presented to elicit immune responses in an in vitro model, which provides insight into the epitopes presented during EBV lytic cycle and reactivation. It expands the range of viral targets for potential NPC early diagnosis and treatment.


Assuntos
Infecções por Vírus Epstein-Barr , Antígeno HLA-A2 , Herpesvirus Humano 4 , Carcinoma Nasofaríngeo , Peptídeos , Humanos , Herpesvirus Humano 4/imunologia , Herpesvirus Humano 4/genética , Peptídeos/imunologia , Peptídeos/química , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/virologia , Antígeno HLA-A2/imunologia , Antígeno HLA-A2/genética , Carcinoma Nasofaríngeo/imunologia , Carcinoma Nasofaríngeo/virologia , Antígeno HLA-A11/imunologia , Antígeno HLA-A11/genética , Proteômica/métodos , Neoplasias Nasofaríngeas/imunologia , Neoplasias Nasofaríngeas/virologia , China , Espectrometria de Massas em Tandem , Epitopos de Linfócito T/imunologia , Linhagem Celular Tumoral
3.
Bioinformatics ; 39(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37624922

RESUMO

SUMMARY: Mass spectrometry (MS)-based proteomics has become the most powerful approach to study the proteome of given biological and clinical samples. Advancements in sample preparation and MS detection have extended the application of proteomics but have also brought new demands on data analysis. Appropriate proteomics data analysis workflow mainly requires quality control, hypothesis testing, functional mining, and visualization. Although there are numerous tools for each process, an efficient and universal tandem analysis toolkit to obtain a quick overall view of various proteomics data is still urgently needed. Here, we present DEP2, an updated version of DEP we previously established, for proteomics data analysis. We amended the analysis workflow by incorporating alternative approaches to accommodate diverse proteomics data, introducing peptide-protein summarization and coupling biological function exploration. In summary, DEP2 is a well-rounded toolkit designed for protein- and peptide-level quantitative proteomics data. It features a more flexible differential analysis workflow and includes a user-friendly Shiny application to facilitate data analysis. AVAILABILITY AND IMPLEMENTATION: DEP2 is available at https://github.com/mildpiggy/DEP2, released under the MIT license. For further information and usage details, please refer to the package website at https://mildpiggy.github.io/DEP2/.


Assuntos
Análise de Dados , Proteômica , Espectrometria de Massas , Proteoma , Controle de Qualidade
4.
Cell Rep ; 42(9): 113045, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37632749

RESUMO

Autophagy is a fundamental biological process critical to all eukaryotic cellular life. Although autophagy has been increasingly studied, how its process is precisely coordinated remains an open question. ATG14 (ATG14L/Barkor) is known to play a crucial role in both autophagosome formation and autophagosome-lysosome fusion. However, how ATG14 is regulated, especially at the post-translation level, is still not clear. Here, we report that MARCH7 (membrane-associated ring-CH-type finger 7), an E3 ubiquitin ligase, inhibits autophagy by ubiquitinating ATG14. MARCH7 significantly promotes K6-, K11-, and K63-linked mixed polyubiquitination on ATG14, triggering the aggregation of ATG14 and reducing its solubility in cells. Functionally, we find that MARCH7 depletion decreases the number of aggresome-like induced structures (ALISs). Mechanistically, we show that ubiquitinated ATG14 has fewer interactions with STX17, leading to the inhibition of autophagy flux. Collectively, our study reveals a mechanism in regulating autophagy and suggests a potential strategy for the treatment of autophagy-related diseases.

5.
Genomics Proteomics Bioinformatics ; 19(5): 707-726, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34774773

RESUMO

The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is currently a global pandemic. Extensive investigations have been performed to study the clinical and cellular effects of SARS-CoV-2 infection. Mass spectrometry-based proteomics studies have revealed the cellular changes due to the infection and identified a plethora of interactors for all SARS-CoV-2 components, except for the longest non-structural protein 3 (NSP3). Here, we expressed the full-length NSP3 proteins of SARS-CoV and SARS-CoV-2 to investigate their unique and shared functions using multi-omics methods. We conducted interactome, phosphoproteome, ubiquitylome, transcriptome, and proteome analyses of NSP3-expressing cells. We found that NSP3 plays essential roles in cellular functions such as RNA metabolism and immune response (e.g., NF-κB signal transduction). Interestingly, we showed that SARS-CoV-2 NSP3 has both endoplasmic reticulum and mitochondrial localizations. In addition, SARS-CoV-2 NSP3 is more closely related to mitochondrial ribosomal proteins, whereas SARS-CoV NSP3 is related to the cytosolic ribosomal proteins. In summary, our integrative multi-omics study of NSP3 improves the understanding of the functions of NSP3 and offers potential targets for the development of anti-SARS strategies.


Assuntos
Proteases Semelhantes à Papaína de Coronavírus/fisiologia , RNA Polimerase Dependente de RNA/fisiologia , SARS-CoV-2/fisiologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Proteínas não Estruturais Virais/fisiologia , COVID-19 , Humanos , Proteoma , Proteínas Ribossômicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...