Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 137(3): 56, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386181

RESUMO

KEY MESSAGE: A new OrAnom1 gene introgressed in cultivated sunflower from wild Helianthus anomalus confers late post-attachment resistance to Orobanche cumana race G and maps to a target interval in Chromosome 4 where two receptor-like kinases (RLKs) have been identified in the H. anomalus genome as putative candidates. Sunflower broomrape is a parasitic weed that infects sunflower (Helianthus annuus L.) roots causing severe yield losses. Breeding for resistance is the most effective and sustainable control method. In this study, we report the identification, introgression, and genetic and physiological characterization of a new sunflower source of resistance to race G of broomrape developed from the wild annual sunflower H. anomalus (accession PI 468642). Crosses between PI 468642 and the susceptible line P21 were carried out, and the genetic study was conducted in BC1F1, BC1F2, and its derived BC1F3 populations. A BC1F5 germplasm named ANOM1 was developed through selection for race G resistance and resemblance to cultivated sunflower. The resistant trait showed monogenic and dominant inheritance. The gene, named OrAnom1, was mapped to Chromosome 4 within a 1.2 cM interval and co-segregated with 7 SNP markers. This interval corresponds to a 1.32 Mb region in the sunflower reference genome, housing a cluster of receptor-like kinase and receptor-like protein (RLK-RLP) genes. Notably, the analysis of the H. anomalus genome revealed the absence of RLPs in the OrAnom1 target region but featured two RLKs as possible OrAnom1 candidates. Rhizotron and histological studies showed that OrAnom1 determines a late post-attachment resistance mechanism. Broomrape can establish a vascular connection with the host, but parasite growth is stopped before tubercle development, showing phenolic compounds accumulation and tubercle necrosis. ANOM1 will contribute to broadening the genetic basis of broomrape resistance in the cultivated sunflower pool and to a better understanding of the molecular basis of the sunflower-broomrape interaction.


Assuntos
Helianthus , Orobanche , Helianthus/genética , Melhoramento Vegetal , Necrose , Fenóis
2.
Front Plant Sci ; 14: 1236511, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868306

RESUMO

Introduction: The sunflower broomrape (Orobanche cumana Wallr.) gene pools of the Guadalquivir Valley and Cuenca province in Spain had predominantly race-F virulence. A new race G was observed recently in the Guadalquivir Valley potentially due to the genetic recombination of the avirulence genes of both gene pools. Methods: In this research, we have studied populations with atypical virulence from Cuenca. These populations parasitize on DEB2 sunflower line, resistant to all race-G populations evaluated. Ten populations collected in Cuenca province were evaluated with sunflower differential lines and genotyped with 67 SNP markers. Results: Although genetic recombination with individuals of the Guadalquivir Valley gene pool has been observed in most populations, recombination of avirulence genes was discarded as the cause of the new virulence because the population with the highest degree of attack on DEB2 showed no introgression from an external gene pool. Accordingly, a point mutation is proposed as the putative cause of the new virulence. Discussion: The present study provided a detailed characterization of each population, including the accurate classification of the individuals belonging to each of the classical Spanish gene pools, F1 hybrids, and those that evolved from hybridization between both gene pools. This information is essential to understand how sunflower broomrape populations are evolving in Spain, which in turn may be helpful to understand the dynamics of sunflower broomrape populations in other areas of the world and use this information to develop durable strategies for resistance breeding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...