Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
ASN Neuro ; 15: 17590914231184072, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37410995

RESUMO

Volume-regulated anion channels (VRACs) are a group of ubiquitously expressed outwardly-rectifying anion channels that sense increases in cell volume and act to return cells to baseline volume through an efflux of anions and organic osmolytes, including glutamate. Because cell swelling, increased extracellular glutamate levels, and reduction of the brain extracellular space (ECS) all occur during seizure generation, we set out to determine whether VRACs are dysregulated throughout mesial temporal lobe epilepsy (MTLE), the most common form of adult epilepsy. To accomplish this, we employed the IHKA experimental model of MTLE, and probed for the expression of LRRC8A, the essential pore-forming VRAC subunit, at acute, early-, mid-, and late-epileptogenic time points (1-, 7-, 14-, and 30-days post-IHKA, respectively). Western blot analysis revealed the upregulation of total dorsal hippocampal LRRC8A 14-days post-IHKA in both the ipsilateral and contralateral hippocampus. Immunohistochemical analyses showed an increased LRRC8A signal 7-days post-IHKA in both the ipsilateral and contralateral hippocampus, along with layer-specific changes 1-, 7-, and 30-days post-IHKA bilaterally. LRRC8A upregulation 1 day post-IHKA was observed primarily in astrocytes; however, some upregulation was also observed in neurons. Glutamate-GABA/glutamine cycle enzymes glutamic acid decarboxylase, glutaminase, and glutamine synthetase were also dysregulated at the 7-day timepoint post status epilepticus. The timepoint-dependent upregulation of total hippocampal LRRC8A and the possible subsequent increased efflux of glutamate in the epileptic hippocampus suggest that the dysregulation of astrocytic VRAC may play an important role in the development of epilepsy.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Humanos , Adulto , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/metabolismo , Ácido Caínico/toxicidade , Ácido Caínico/metabolismo , Ácido Glutâmico/metabolismo , Epilepsia/metabolismo , Hipocampo/metabolismo , Ânions/metabolismo , Proteínas de Membrana/metabolismo
2.
Cell Rep Methods ; 2(8): 100276, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-36046623

RESUMO

Astrocytes are vital support cells that ensure proper brain function. In brain disease, astrocytes reprogram into a reactive state that alters many of their cellular roles. A long-standing question in the field is whether downregulation of reactive astrocyte (RA) markers during resolution of inflammation is because these astrocytes revert back to a non-reactive state or die and are replaced. This has proven difficult to answer mainly because existing genetic tools cannot distinguish between healthy versus RAs. Here we describe the generation of an inducible genetic tool that can be used to specifically target and label a subset of RAs. Longitudinal analysis of an acute inflammation model using this tool revealed that the previously observed downregulation of RA markers after inflammation is likely due to changes in gene expression and not because of cell death. Our findings suggest that cellular changes associated with astrogliosis after acute inflammation are largely reversible.


Assuntos
Astrócitos , Encefalopatias , Humanos , Astrócitos/metabolismo , Encéfalo/metabolismo , Estudos Longitudinais , Encefalopatias/metabolismo , Inflamação/genética
3.
Front Cell Neurosci ; 16: 930384, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936495

RESUMO

Rapid increases in cell volume reduce the size of the extracellular space (ECS) and are associated with elevated brain tissue excitability. We recently demonstrated that astrocytes, but not neurons, rapidly swell in elevated extracellular potassium (∧[K+] o ) up to 26 mM. However, effects of acute astrocyte volume fluctuations on neuronal excitability in ∧[K+] o have been difficult to evaluate due to direct effects on neuronal membrane potential and generation of action potentials. Here we set out to isolate volume-specific effects occurring in ∧[K+] o on CA1 pyramidal neurons in acute hippocampal slices by manipulating cell volume while recording neuronal glutamate currents in 10.5 mM [K+] o + tetrodotoxin (TTX) to prevent neuronal firing. Elevating [K+] o to 10.5 mM induced astrocyte swelling and produced significant increases in neuronal excitability in the form of mixed α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/N-methyl-D-aspartate (NMDA) receptor mEPSCs and NMDA receptor-dependent slow inward currents (SICs). Application of hyperosmolar artificial cerebrospinal fluid (ACSF) by addition of mannitol in the continued presence of 10.5 mM K+ forced shrinking of astrocytes and to a lesser extent neurons, which resisted swelling in ∧[K+] o . Cell shrinking and dilation of the ECS significantly dampened neuronal excitability in 10.5 mM K+. Subsequent removal of mannitol amplified effects on neuronal excitability and nearly doubled the volume increase in astrocytes, presumably due to continued glial uptake of K+ while mannitol was present. Slower, larger amplitude events mainly driven by NMDA receptors were abolished by mannitol-induced expansion of the ECS. Collectively, our findings suggest that cell volume regulation of the ECS in elevated [K+] o is driven predominantly by astrocytes, and that cell volume effects on neuronal excitability can be effectively isolated in elevated [K+] o conditions.

4.
Front Cell Neurosci ; 16: 962714, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035259

RESUMO

Volume Regulated Anion Channels (VRAC) are critical contributors to cell volume homeostasis and are expressed ubiquitously in all vertebrate cells. VRAC sense increases in cell volume, and act to return cells to baseline volume in a process known as regulatory volume decrease (RVD) through the efflux of anions and organic osmolytes. This review will highlight seminal studies that elucidated the role of VRAC in RVD, their characteristics as a function of subunit specificity, and their clinical relevance in physiology and pathology. VRAC are also known as volume-sensitive outward rectifiers (VSOR) and volume-sensitive organic osmolyte/anion channels (VSOAC). In this review, the term VRAC will be used to refer to this family of channels.

5.
Glia ; 70(11): 2013-2031, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35635369

RESUMO

Astrocyte volume fluctuation is a physiological phenomenon tied closely to the activation of neural circuits. Identification of underlying mechanisms has been challenging due in part to use of a wide range of experimental approaches that vary between research groups. Here, we first review the many methods that have been used to measure astrocyte volume changes directly or indirectly. While the field has recently shifted towards volume analysis using fluorescence microscopy to record cell volume changes directly, established metrics corresponding to extracellular space dynamics have also yielded valuable insights. We then turn to analysis of mechanisms of astrocyte swelling derived from many studies, with a focus on volume changes tied to increases in extracellular potassium concentration ([K+ ]o ). The diverse methods that have been utilized to generate the external [K+ ]o environment highlight multiple scenarios of astrocyte swelling mediated by different mechanisms. Classical potassium buffering theories are tempered by many recent studies that point to different swelling pathways optimized at particular [K+ ]o and that depend on local/transient versus more sustained increases in [K+ ]o .


Assuntos
Mel , Canais de Potássio Corretores do Fluxo de Internalização , Astrócitos/metabolismo , Espaço Extracelular/metabolismo , Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo
6.
ASN Neuro ; 12: 1759091420967152, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33092407

RESUMO

Astrocytes and neurons have been shown to swell across a variety of different conditions, including increases in extracellular potassium concentration (^[K+]o). The mechanisms involved in the coupling of K+ influx to water movement into cells leading to cell swelling are not well understood and remain controversial. Here, we set out to determine the effects of ^[K+]o on rapid volume responses of hippocampal CA1 pyramidal neurons and stratum radiatum astrocytes using real-time confocal volume imaging. First, we found that elevating [K+]o within a physiological range (to 6.5 mM and 10.5 mM from a baseline of 2.5 mM), and even up to pathological levels (26 mM), produced dose-dependent increases in astrocyte volume, with absolutely no effect on neuronal volume. In the absence of compensating for addition of KCl by removal of an equal amount of NaCl, neurons actually shrank in ^[K+]o, while astrocytes continued to exhibit rapid volume increases. Astrocyte swelling in ^[K+]o was not dependent on neuronal firing, aquaporin 4, the inwardly rectifying potassium channel Kir 4.1, the sodium bicarbonate cotransporter NBCe1, , or the electroneutral cotransporter, sodium-potassium-chloride cotransporter type 1 (NKCC1), but was significantly attenuated in 1 mM barium chloride (BaCl2) and by the Na+/K+ ATPase inhibitor ouabain. Effects of 1 mM BaCl2 and ouabain applied together were not additive and, together with reports that BaCl2 can inhibit the NKA at high concentrations, suggests a prominent role for the astrocyte NKA in rapid astrocyte volume increases occurring in ^[K+]o. These findings carry important implications for understanding mechanisms of cellular edema, regulation of the brain extracellular space, and brain tissue excitability.


Assuntos
Aquaporina 4/metabolismo , Astrócitos/metabolismo , Tamanho Celular , Hipocampo/metabolismo , Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Hipocampo/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Potássio/farmacologia
7.
J Neurosci ; 38(1): 3-13, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29298904

RESUMO

A major controversy persists within the field of glial biology concerning whether or not, under physiological conditions, neuronal activity leads to Ca2+-dependent release of neurotransmitters from astrocytes, a phenomenon known as gliotransmission. Our perspective is that, while we and others can apply techniques to cause gliotransmission, there is considerable evidence gathered using astrocyte-specific and more physiological approaches which suggests that gliotransmission is a pharmacological phenomenon rather than a physiological process. Approaches providing evidence against gliotransmission include stimulation of Gq-GPCRs expressed only in astrocytes, as well as removal of the primary proposed source of astrocyte Ca2+ responsible for gliotransmission. These approaches contrast with those supportive of gliotransmission, which include mechanical stimulation, strong astrocytic depolarization using whole-cell patch-clamp or optogenetics, uncaging Ca2+ or IP3, chelating Ca2+ using BAPTA, and nonspecific bath application of agonists to receptors expressed by a multitude of cell types. These techniques are not subtle and therefore are not supportive of recent suggestions that gliotransmission requires very specific and delicate temporal and spatial requirements. Other evidence, including lack of propagating Ca2+ waves between astrocytes in healthy tissue, lack of expression of vesicular release machinery, and the demise of the d-serine gliotransmission hypothesis, provides additional evidence against gliotransmission. Overall, the data suggest that Ca2+-dependent release of neurotransmitters is the province of neurons, not astrocytes, in the intact brain under physiological conditions.Dual Perspectives Companion Paper: Gliotransmission: Beyond Black-and-White, by Iaroslav Savtchouk and Andrea Volterra.


Assuntos
Neuroglia/fisiologia , Transmissão Sináptica/fisiologia , Animais , Astrócitos/fisiologia , Sinalização do Cálcio , Humanos , Neurônios/fisiologia
8.
Front Cell Neurosci ; 11: 275, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28979186

RESUMO

Normal nervous system function is critically dependent on the balance of water and ions in the extracellular space (ECS). Pathological reduction in brain interstitial osmolarity results in osmotically-driven flux of water into cells, causing cellular edema which reduces the ECS and increases neuronal excitability and risk of seizures. Astrocytes are widely considered to be particularly susceptible to cellular edema due to selective expression of the water channel aquaporin-4 (AQP4). The apparent resistance of pyramidal neurons to osmotic swelling has been attributed to lack of functional water channels. In this study we report rapid volume changes in CA1 pyramidal cells in hypoosmolar ACSF (hACSF) that are equivalent to volume changes in astrocytes across a variety of conditions. Astrocyte and neuronal swelling was significant within 1 min of exposure to 17 or 40% hACSF, was rapidly reversible upon return to normosmolar ACSF, and repeatable upon re-exposure to hACSF. Neuronal swelling was not an artifact of patch clamp, occurred deep in tissue, was similar at physiological vs. room temperature, and occurred in both juvenile and adult hippocampal slices. Neuronal swelling was neither inhibited by TTX, nor by antagonists of NMDA or AMPA receptors, suggesting that it was not occurring as a result of excitotoxicity. Surprisingly, genetic deletion of AQP4 did not inhibit, but rather augmented, astrocyte swelling in severe hypoosmolar conditions. Taken together, our results indicate that neurons are not osmoresistant as previously reported, and that osmotic swelling is driven by an AQP4-independent mechanism.

9.
Neurobiol Dis ; 104: 24-32, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28438505

RESUMO

Approximately 1% of the global population suffers from epilepsy, a class of disorders characterized by recurrent and unpredictable seizures. Of these cases roughly one-third are refractory to current antiepileptic drugs, which typically target neuronal excitability directly. The events leading to seizure generation and epileptogenesis remain largely unknown, hindering development of new treatments. Some recent experimental models of epilepsy have provided compelling evidence that glial cells, especially astrocytes, could be central to seizure development. One of the proposed mechanisms for astrocyte involvement in seizures is astrocyte swelling, which may promote pathological neuronal firing and synchrony through reduction of the extracellular space and elevated glutamate concentrations. In this review, we discuss the common conditions under which astrocytes swell, the resultant effects on neural excitability, and how seizure development may ultimately be influenced by these effects.


Assuntos
Astrócitos/patologia , Astrócitos/fisiologia , Ácido Glutâmico/metabolismo , Convulsões/patologia , Animais , Humanos
10.
PLoS Pathog ; 12(6): e1005643, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27281462

RESUMO

The immune privileged nature of the CNS can make it vulnerable to chronic and latent infections. Little is known about the effects of lifelong brain infections, and thus inflammation, on the neurological health of the host. Toxoplasma gondii is a parasite that can infect any mammalian nucleated cell with average worldwide seroprevalence rates of 30%. Infection by Toxoplasma is characterized by the lifelong presence of parasitic cysts within neurons in the brain, requiring a competent immune system to prevent parasite reactivation and encephalitis. In the immunocompetent individual, Toxoplasma infection is largely asymptomatic, however many recent studies suggest a strong correlation with certain neurodegenerative and psychiatric disorders. Here, we demonstrate a significant reduction in the primary astrocytic glutamate transporter, GLT-1, following infection with Toxoplasma. Using microdialysis of the murine frontal cortex over the course of infection, a significant increase in extracellular concentrations of glutamate is observed. Consistent with glutamate dysregulation, analysis of neurons reveal changes in morphology including a reduction in dendritic spines, VGlut1 and NeuN immunoreactivity. Furthermore, behavioral testing and EEG recordings point to significant changes in neuronal output. Finally, these changes in neuronal connectivity are dependent on infection-induced downregulation of GLT-1 as treatment with the ß-lactam antibiotic ceftriaxone, rescues extracellular glutamate concentrations, neuronal pathology and function. Altogether, these data demonstrate that following an infection with T. gondii, the delicate regulation of glutamate by astrocytes is disrupted and accounts for a range of deficits observed in chronic infection.


Assuntos
Astrócitos/metabolismo , Encéfalo/microbiologia , Transportador 2 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Homeostase , Neurônios/metabolismo , Toxoplasmose Cerebral/metabolismo , Animais , Western Blotting , Encéfalo/metabolismo , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/microbiologia , Modelos Animais de Doenças , Eletroencefalografia , Feminino , Homeostase/fisiologia , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microdiálise , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase em Tempo Real , Toxoplasma
11.
ASN Neuro ; 7(5)2015.
Artigo em Inglês | MEDLINE | ID: mdl-26489684

RESUMO

Cellular edema (cell swelling) is a principal component of numerous brain disorders including ischemia, cortical spreading depression, hyponatremia, and epilepsy. Cellular edema increases seizure-like activity in vitro and in vivo, largely through nonsynaptic mechanisms attributable to reduction of the extracellular space. However, the types of excitability changes occurring in individual neurons during the acute phase of cell volume increase remain unclear. Using whole-cell patch clamp techniques, we report that one of the first effects of osmotic edema on excitability of CA1 pyramidal cells is the generation of slow inward currents (SICs), which initiate after approximately 1 min. Frequency of SICs increased as osmolarity decreased in a dose-dependent manner. Imaging of real-time volume changes in astrocytes revealed that neuronal SICs occurred while astrocytes were still in the process of swelling. SICs evoked by cell swelling were mainly nonsynaptic in origin and NMDA receptor-dependent. To better understand the relationship between SICs and changes in neuronal excitability, recordings were performed in increasingly physiological conditions. In the absence of any added pharmacological reagents or imposed voltage clamp, osmotic edema induced excitatory postsynaptic potentials and burst firing over the same timecourse as SICs. Like SICs, action potentials were blocked by NMDAR antagonists. Effects were more pronounced in adult (8-20 weeks old) compared with juvenile (P15-P21) mice. Together, our results indicate that cell swelling triggered by reduced osmolarity rapidly increases neuronal excitability through activation of NMDA receptors. Our findings have important implications for understanding nonsynaptic mechanisms of epilepsy in relation to cell swelling and reduction of the extracellular space.


Assuntos
Edema Encefálico/fisiopatologia , Região CA1 Hipocampal/fisiopatologia , Células Piramidais/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Envelhecimento/efeitos dos fármacos , Envelhecimento/fisiologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Astrócitos/fisiologia , Edema Encefálico/patologia , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/crescimento & desenvolvimento , Região CA1 Hipocampal/patologia , Cátions Bivalentes/metabolismo , Tamanho Celular , Magnésio/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos Endogâmicos C57BL , Concentração Osmolar , Técnicas de Patch-Clamp , Células Piramidais/efeitos dos fármacos , Células Piramidais/patologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Técnicas de Cultura de Tecidos
12.
J Vis Exp ; (85)2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24686723

RESUMO

Close to two decades of research has established that astrocytes in situ and in vivo express numerous G protein-coupled receptors (GPCRs) that can be stimulated by neuronally-released transmitter. However, the ability of astrocytic receptors to exhibit plasticity in response to changes in neuronal activity has received little attention. Here we describe a model system that can be used to globally scale up or down astrocytic group I metabotropic glutamate receptors (mGluRs) in acute brain slices. Included are methods on how to prepare parasagittal hippocampal slices, construct chambers suitable for long-term slice incubation, bidirectionally manipulate neuronal action potential frequency, load astrocytes and astrocyte processes with fluorescent Ca(2+) indicator, and measure changes in astrocytic Gq GPCR activity by recording spontaneous and evoked astrocyte Ca(2+) events using confocal microscopy. In essence, a "calcium roadmap" is provided for how to measure plasticity of astrocytic Gq GPCRs. Applications of the technique for study of astrocytes are discussed. Having an understanding of how astrocytic receptor signaling is affected by changes in neuronal activity has important implications for both normal synaptic function as well as processes underlying neurological disorders and neurodegenerative disease.


Assuntos
Astrócitos/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Animais , Astrócitos/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Hipocampo/fisiologia , Camundongos , Neurônios/metabolismo , Técnicas de Patch-Clamp/métodos , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo
13.
Cell Calcium ; 55(1): 1-16, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24262208

RESUMO

Astrocyte Gq GPCR and IP3 receptor-dependent Ca(2+) elevations occur spontaneously in situ and in vivo. These events vary considerably in size, often remaining confined to small territories of astrocyte processes called "microdomains" and sometimes propagating over longer distances that can include the soma. It has remained unclear whether these events are driven by constitutive (basal) GPCR signaling activity, neuronal action potential-dependent or quantal vesicular release, or some combination of these mechanisms. Here, we applied manipulations to increase or inhibit neuronal vesicular neurotransmitter release together with low-level stimulation of Schaffer collaterals in acute mouse hippocampal slices in an effort to determine the mechanisms underlying spontaneous astrocyte Ca(2+) events. We found no significant change in spontaneous microdomain astrocyte Ca(2+) elevations when neuronal action potentials were significantly enhanced or blocked. The astrocyte Ca(2+) activity was also not affected by inhibitors of group I mGluRs. However, blockade of miniature neurotransmitter release using Bafilomycin A1 significantly reduced the frequency of microdomain astrocyte Ca(2+) elevations. We then tested whether astrocyte Ca(2+) microdomains can be evoked by low intensity SC stimulation. Importantly, microdomains could not be reproduced even using single, low intensity pulses to the SCs at a minimum distance from the astrocyte. Evoked astrocyte Ca(2+) responses most often included the cell soma, were reduced by group I mGluR antagonists, and were larger in size compared to spontaneous Ca(2+) microdomains. Overall, our findings suggest that spontaneous microdomain astrocyte Ca(2+) elevations are not driven by neuronal action potentials but require quantal release of neurotransmitter which cannot be replicated by stimulation of Schaffer collaterals.


Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Cálcio/metabolismo , Macrolídeos/farmacologia , Microdomínios da Membrana/metabolismo , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Potenciais de Ação/fisiologia , Animais , Astrócitos/citologia , Sinalização do Cálcio/fisiologia , Inibidores Enzimáticos/farmacologia , Ácido Glutâmico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Neurotransmissores/metabolismo , Técnicas de Patch-Clamp , Células Piramidais/citologia
14.
Neurochem Int ; 63(7): 638-51, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23376026

RESUMO

It is estimated that one in 26 people will develop epilepsy in their lifetime, amounting to almost 12 million people in the United States alone (Hesdorffer et al., 2011). Epilepsy is a group of conditions characterized by sporadic occurrence of seizures and unconsciousness. This severely limits the ability to perform everyday tasks and leads to increased difficulty with learning and memory, maintenance of steady employment, driving, and overall socioeconomic integration. A greater understanding of the cellular and molecular mechanisms underlying seizures and epilepsy is necessary, as it may lead to novel antiepileptic treatments. In this chapter, we will review the current literature surrounding the involvement of glial cells in epilepsy with particular emphasis on review of human tissue studies and some possible underlying mechanisms. Based on the current evidence and hypotheses of glial mechanisms in epilepsy, novel therapeutic opportunities for the treatment of epilepsy will also be presented.


Assuntos
Transplante de Células , Epilepsia/terapia , Neuroglia/citologia , Adenosina/metabolismo , Aquaporinas/metabolismo , Cálcio/metabolismo , Epilepsia/metabolismo , Glucose/metabolismo , Humanos , Neuroglia/metabolismo , Neuroglia/patologia , Canais de Potássio/metabolismo , Receptores de Glutamato/metabolismo
15.
J Neurophysiol ; 109(9): 2404-14, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23427307

RESUMO

One of the most important functions of astrocytes is removal of glutamate released during synaptic transmission. Surprisingly, the mechanisms by which astrocyte glutamate uptake is acutely modulated remain to be clarified. Astrocytes express metabotropic glutamate receptors (mGluRs) and other G protein-coupled receptors (GPCRs), which are activated during neuronal activity. Here, we test the hypothesis that astrocytic group I mGluRs acutely regulate glutamate uptake by astrocytes in situ. This hypothesis was tested in acute mouse hippocampal slices. Activation of astrocytic mGluRs, using a tetanic high-frequency stimulus (HFS) applied to Schaffer collaterals, led to potentiation of the amplitude of the synaptically evoked glutamate transporter currents (STCs) and associated charge transfer without changes in kinetics. Similar potentiation of STCs was not observed in the presence of group I mGluR antagonists or the PKC inhibitor, PKC 19-36, suggesting that HFS-induced potentiation of astrocyte glutamate uptake is astrocytic group I mGluR and PKC dependent. Pharmacological stimulation of a transgenic GPCR (MrgA1R), expressed exclusively in astrocytes, also potentiated STC amplitude and charge transfer, albeit quicker and shorter lasting compared with HFS-induced potentiation. The amplitude of the slow, inward astrocytic current due to potassium (K(+)) influx was also enhanced following activation of the endogenous mGluRs or the astrocyte-specific MrgA1 Gq GPCRs. Taken together, these findings suggest that astrocytic group I mGluR activation has a synergistic, modulatory effect on the uptake of glutamate and K(+).


Assuntos
Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Potenciação de Longa Duração , Potássio/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Potenciais de Ação , Animais , Astrócitos/fisiologia , Estimulação Elétrica , Hipocampo/citologia , Hipocampo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/fisiologia , Proteína Quinase C/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Sinapses/metabolismo , Sinapses/fisiologia
16.
Front Cell Neurosci ; 7: 272, 2013 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-24399932

RESUMO

Astrocytes are a predominant glial cell type in the nervous systems, and are becoming recognized as important mediators of normal brain function as well as neurodevelopmental, neurological, and neurodegenerative brain diseases. Although numerous potential mechanisms have been proposed to explain the role of astrocytes in the normal and diseased brain, research into the physiological relevance of these mechanisms in vivo is just beginning. In this review, we will summarize recent developments in innovative and powerful molecular approaches, including knockout mouse models, transgenic mouse models, and astrocyte-targeted gene transfer/expression, which have led to advances in understanding astrocyte biology in vivo that were heretofore inaccessible to experimentation. We will examine the recently improved understanding of the roles of astrocytes - with an emphasis on astrocyte signaling - in the context of both the healthy and diseased brain, discuss areas where the role of astrocytes remains debated, and suggest new research directions.

17.
PLoS One ; 7(11): e49637, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23166735

RESUMO

Very little is known about the ability of astrocytic receptors to exhibit plasticity as a result of changes in neuronal activity. Here we provide evidence for bidirectional scaling of astrocytic group I metabotropic glutamate receptor signaling in acute mouse hippocampal slices following long-term changes in neuronal firing rates. Plasticity of astrocytic mGluRs was measured by recording spontaneous and evoked Ca²âº elevations in both astrocytic somata and processes. An exogenous astrocytic Gq G protein-coupled receptor was resistant to scaling, suggesting that the alterations in astrocyte Ca²âº signaling result from changes in activity of the surface mGluRs rather than a change in intracellular G protein signaling molecules. These findings suggest that astrocytes actively detect shifts in neuronal firing rates and adjust their receptor signaling accordingly. This type of long-term plasticity in astrocytes resembles neuronal homeostatic plasticity and might be important to ensure an optimal or expected level of input from neurons.


Assuntos
Potenciais de Ação , Astrócitos/metabolismo , Neurônios/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Transdução de Sinais , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Comunicação Celular , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Hipocampo/metabolismo , Microdomínios da Membrana/metabolismo , Camundongos , Técnicas de Patch-Clamp , Potássio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
18.
Front Pharmacol ; 3: 139, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22811669

RESUMO

A prominent area of neuroscience research over the past 20 years has been the acute modulation of neuronal synaptic activity by Ca(2+)-dependent release of the transmitters ATP, D-serine, and glutamate (called gliotransmitters) by astrocytes. Although the physiological relevance of this mechanism is under debate, emerging evidence suggests that there are critical factors in addition to Ca(2+) that are required for gliotransmitters to be released from astrocytes. Interestingly, these factors include activated microglia and the proinflammatory cytokine Tumor Necrosis Factor α (TNFα), chemotactic cytokine Stromal cell-Derived Factor-1α (SDF-1α), and inflammatory mediator prostaglandin E2 (PGE(2)). Of note, microglial activation and release of inflammatory molecules from activated microglia and reactive astrocytes can occur within minutes of a triggering stimulus. Therefore, activation of astrocytes by inflammatory molecules combined with Ca(2+) elevations may lead to gliotransmitter release, and be an important step in the early sequence of events contributing to hyperexcitability, excitotoxicity, and neurodegeneration in the damaged or diseased brain. In this review, we will first examine evidence questioning Ca(2+)-dependent gliotransmitter release from astrocytes in healthy brain tissue, followed by a close examination of recent work suggesting that Ca(2+)-dependent gliotransmitter release occurs as an early event in the development of neurological disorders and neuroinflammatory and neurodegenerative diseases.

19.
Proc Natl Acad Sci U S A ; 109(7): E442-51, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22308427

RESUMO

Dendritic spines are dynamic, actin-rich structures that form the postsynaptic sites of most excitatory synapses in the brain. The F-actin severing protein cofilin has been implicated in the remodeling of dendritic spines and synapses under normal and pathological conditions, by yet unknown mechanisms. Here we report that ß-arrestin-2 plays an important role in NMDA-induced remodeling of dendritic spines and synapses via translocation of active cofilin to dendritic spines. NMDAR activation triggers cofilin activation through calcineurin and phosphatidylinositol 3-kinase (PI3K)-mediated dephosphorylation and promotes cofilin translocation to dendritic spines that is mediated by ß-arrestin-2. Hippocampal neurons lacking ß-arrestin-2 develop mature spines that fail to remodel in response to NMDA. ß-Arrestin-2-deficient mice exhibit normal hippocampal long-term potentiation, but significantly impaired NMDA-dependent long-term depression and spatial learning deficits. Moreover, ß-arrestin-2-deficient hippocampal neurons are resistant to Aß-induced dendritic spine loss. Our studies demonstrate unique functions of ß-arrestin-2 in NMDAR-mediated dendritic spine and synapse plasticity through spatial control over cofilin activation.


Assuntos
Fatores de Despolimerização de Actina/fisiologia , Arrestinas/fisiologia , Espinhas Dendríticas/fisiologia , Aprendizagem , Depressão Sináptica de Longo Prazo , N-Metilaspartato/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Calcineurina/metabolismo , Camundongos , Camundongos Knockout , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Receptores de N-Metil-D-Aspartato/metabolismo , beta-Arrestina 2 , beta-Arrestinas
20.
Science ; 327(5970): 1250-4, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20203048

RESUMO

The concept that astrocytes release neuroactive molecules (gliotransmitters) to affect synaptic transmission has been a paradigm shift in neuroscience research over the past decade. This concept suggests that astrocytes, together with pre- and postsynaptic neuronal elements, make up a functional synapse. Astrocyte release of gliotransmitters (for example, glutamate and adenosine triphosphate) is generally accepted to be a Ca2+-dependent process. We used two mouse lines to either selectively increase or obliterate astrocytic Gq G protein-coupled receptor Ca2+ signaling to further test the hypothesis that astrocytes release gliotransmitters in a Ca2+-dependent manner to affect synaptic transmission. Neither increasing nor obliterating astrocytic Ca2+ fluxes affects spontaneous and evoked excitatory synaptic transmission or synaptic plasticity. Our findings suggest that, at least in the hippocampus, the mechanisms of gliotransmission need to be reconsidered.


Assuntos
Astrócitos/metabolismo , Região CA1 Hipocampal/fisiologia , Sinalização do Cálcio , Cálcio/metabolismo , Potenciação de Longa Duração , Plasticidade Neuronal , Transmissão Sináptica , Animais , Região CA1 Hipocampal/citologia , Potenciais Pós-Sinápticos Excitadores , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , N-Metilaspartato/metabolismo , Neurônios/fisiologia , Neurotransmissores/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...