Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(31): eadp0114, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39083615

RESUMO

Complex patterns of genome evolution associated with the end-Cretaceous [Cretaceous-Paleogene (K-Pg)] mass extinction limit our understanding of the early evolutionary history of modern birds. Here, we analyzed patterns of avian molecular evolution and identified distinct macroevolutionary regimes across exons, introns, untranslated regions, and mitochondrial genomes. Bird clades originating near the K-Pg boundary exhibited numerous shifts in the mode of molecular evolution, suggesting a burst of genomic heterogeneity at this point in Earth's history. These inferred shifts in substitution patterns were closely related to evolutionary shifts in developmental mode, adult body mass, and patterns of metabolic scaling. Our results suggest that the end-Cretaceous mass extinction triggered integrated patterns of evolution across avian genomes, physiology, and life history near the dawn of the modern bird radiation.


Assuntos
Aves , Evolução Molecular , Extinção Biológica , Genoma , Filogenia , Animais , Aves/genética , Aves/fisiologia , Evolução Biológica , Genoma Mitocondrial
2.
J Morphol ; 285(6): e21710, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38760949

RESUMO

Lithornithidae, an assemblage of volant Palaeogene fossil birds, provide our clearest insights into the early evolutionary history of Palaeognathae, the clade that today includes the flightless ratites and volant tinamous. The neotype specimen of Lithornis vulturinus, from the early Eocene (approximately 53 million years ago) of Europe, includes a partial neurocranium that has never been thoroughly investigated. Here, we describe these cranial remains including the nearly complete digital endocasts of the brain and bony labyrinth. The telencephalon of Lithornis is expanded and its optic lobes are ventrally shifted, as is typical for crown birds. The foramen magnum is positioned caudally, rather than flexed ventrally as in some crown birds, with the optic lobes, cerebellum, and foramen magnum shifted further ventrally. The overall brain shape is similar to that of tinamous, the only extant clade of flying palaeognaths, suggesting that several aspects of tinamou neuroanatomy may have been evolutionarily conserved since at least the early Cenozoic. The estimated ratio of the optic lobe's surface area relative to the total brain suggests a diurnal ecology. Lithornis may provide the clearest insights to date into the neuroanatomy of the ancestral crown bird, combining an ancestrally unflexed brain with a caudally oriented connection with the spinal cord, a moderately enlarged telencephalon, and ventrally shifted, enlarged optic lobes.


Assuntos
Evolução Biológica , Fósseis , Paleógnatas , Crânio , Animais , Fósseis/anatomia & histologia , Paleógnatas/anatomia & histologia , Crânio/anatomia & histologia , Sistema Nervoso Central/anatomia & histologia , Encéfalo/anatomia & histologia , Aves/anatomia & histologia , Paleontologia , Filogenia
3.
Proc Biol Sci ; 291(2016): 20232618, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38351798

RESUMO

The origin of crown birds (Neornithes) remains contentious owing to conflicting divergence time hypotheses obtained from alternative sources of data. The fossil record suggests limited diversification of Neornithes in the Late Mesozoic and a substantial radiation in the aftermath of the Cretaceous-Palaeogene (K-Pg) mass extinction, approximately 66 Ma. Molecular clock studies, however, have yielded estimates for neornithine origins ranging from the Early Cretaceous (130 Ma) to less than 10 Myr before the K-Pg. We use Bayes factors to compare the fit of node ages from different molecular clock studies to an independent morphological dataset. Our results allow us to reject scenarios of crown bird origins deep in the Early Cretaceous, as well as an origin of crown birds within the last 10 Myr of the Cretaceous. The scenario best supported by our analyses is one where Neornithes originated between the Early and Late Cretaceous (ca 100 Ma), while numerous divergences within major neoavian clades either span or postdate the K-Pg. This study affirms the importance of the K-Pg on the diversification of modern birds, and the potential of combined-evidence tip-dating analyses to illuminate recalcitrant 'rocks versus clocks' debates.


Assuntos
Aves , Extinção Biológica , Animais , Filogenia , Teorema de Bayes , Aves/anatomia & histologia , Fósseis , Evolução Biológica
4.
Proc Biol Sci ; 291(2017): 20232250, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38378144

RESUMO

In birds, the quadrate connects the mandible and skull, and plays an important role in cranial kinesis. Avian quadrate morphology may therefore be assumed to have been influenced by selective pressures related to feeding ecology, yet large-scale variation in quadrate morphology and its potential relationship with ecology have never been quantitatively investigated. Here, we used geometric morphometrics and phylogenetic comparative methods to quantify morphological variation of the quadrate and its relationship with key ecological features across a wide phylogenetic sample. We found non-significant associations between quadrate shape and feeding ecology across different scales of phylogenetic comparison; indeed, allometry and phylogeny exhibit stronger relationships with quadrate shape than ecological features. We show that similar quadrate shapes are associated with widely varying dietary ecologies (one-to-many mapping), while divergent quadrate shapes are associated with similar dietary ecologies (many-to-one mapping). Moreover, we show that the avian quadrate evolves as an integrated unit and exhibits strong associations with the morphologies of neighbouring bones. Our results collectively illustrate that quadrate shape has evolved jointly with other elements of the avian kinetic system, with the major crown bird lineages exploring alternative quadrate morphologies, highlighting the potential diagnostic value of quadrate morphology in investigations of bird systematics.


Assuntos
Aves , Crânio , Animais , Filogenia , Aves/anatomia & histologia , Crânio/anatomia & histologia , Cabeça , Mandíbula , Evolução Biológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...