Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38746164

RESUMO

HiChIP enables cost-effective and high-resolution profiling of regulatory and structural loops. To leverage the increasing number of publicly available HiChIP datasets from diverse cell lines and primary cells, we developed the Loop Catalog (https://loopcatalog.lji.org), a web-based database featuring HiChIP loop calls for 1319 samples across 133 studies and 44 high-resolution Hi-C loop calls. We demonstrate its utility in interpreting fine-mapped GWAS variants (SNP-to-gene linking), in identifying enriched sequence motifs and motif pairs at loop anchors, and in network-level analysis of loops connecting regulatory elements (community detection). Our comprehensive catalog, spanning over 4M unique 5kb loops, along with the accompanying analysis modalities constitutes an important resource for studies in gene regulation and genome organization.

2.
J Autoimmun ; 144: 103177, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38368767

RESUMO

Psoriasis (PS) and atopic dermatitis (AD) are common skin inflammatory diseases characterized by hyper-responsive keratinocytes. Although, some cytokines have been suggested to be specific for each disease, other cytokines might be central to both diseases. Here, we show that Tumor necrosis factor superfamily member 14 (TNFSF14), known as LIGHT, is required for experimental PS, similar to its requirement in experimental AD. Mice devoid of LIGHT, or deletion of either of its receptors, lymphotoxin ß receptor (LTßR) and herpesvirus entry mediator (HVEM), in keratinocytes, were protected from developing imiquimod-induced psoriatic features, including epidermal thickening and hyperplasia, and expression of PS-related genes. Correspondingly, in single cell RNA-seq analysis of PS patient biopsies, LTßR transcripts were found strongly expressed with HVEM in keratinocytes, and LIGHT was upregulated in T cells. Similar transcript expression profiles were also seen in AD biopsies, and LTßR deletion in keratinocytes also protected mice from allergen-induced AD features. Moreover, in vitro, LIGHT upregulated a broad spectrum of genes in human keratinocytes that are clinical features of both PS and AD skin lesions. Our data suggest that agents blocking LIGHT activity might be useful for therapeutic intervention in PS as well as in AD.


Assuntos
Dermatite Atópica , Psoríase , Humanos , Camundongos , Animais , Membro 14 de Receptores do Fator de Necrose Tumoral/genética , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Dermatite Atópica/genética , Dermatite Atópica/metabolismo , Receptor beta de Linfotoxina/genética , Receptor beta de Linfotoxina/metabolismo , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Queratinócitos/metabolismo , Citocinas/metabolismo , Psoríase/genética , Psoríase/metabolismo , Inflamação/metabolismo
5.
Sci Rep ; 13(1): 5420, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37012431

RESUMO

Changes in the three-dimensional (3D) structure of the genome are an emerging hallmark of cancer. Cancer-associated copy number variants and single nucleotide polymorphisms promote rewiring of chromatin loops, disruption of topologically associating domains (TADs), active/inactive chromatin state switching, leading to oncogene expression and silencing of tumor suppressors. However, little is known about 3D changes during cancer progression to a chemotherapy-resistant state. We integrated chromatin conformation capture (Hi-C), RNA-seq, and whole-genome sequencing obtained from triple-negative breast cancer patient-derived xenograft primary tumors (UCD52) and carboplatin-resistant samples and found increased short-range (< 2 Mb) interactions, chromatin looping, formation of TAD, chromatin state switching into a more active state, and amplification of ATP-binding cassette transporters. Transcriptome changes suggested the role of long-noncoding RNAs in carboplatin resistance. Rewiring of the 3D genome was associated with TP53, TP63, BATF, FOS-JUN family of transcription factors and led to activation of aggressiveness-, metastasis- and other cancer-related pathways. Integrative analysis highlighted increased ribosome biogenesis and oxidative phosphorylation, suggesting the role of mitochondrial energy metabolism. Our results suggest that 3D genome remodeling may be a key mechanism underlying carboplatin resistance.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Carboplatina/farmacologia , Carboplatina/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Xenoenxertos , Genoma , Cromatina
6.
Nat Immunol ; 23(11): 1628-1643, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36316479

RESUMO

T cell differentiation requires Notch1 signaling. In the present study, we show that an enhancer upstream of Notch1 active in double-negative (DN) mouse thymocytes is responsible for raising Notch1 signaling intrathymically. This enhancer is required to expand multipotent progenitors intrathymically while delaying early differentiation until lineage restrictions have been established. Early thymic progenitors lacking the enhancer show accelerated differentiation through the DN stages and increased frequency of B, innate lymphoid (IL) and natural killer (NK) cell differentiation. Transcription regulators for T cell lineage restriction and commitment are expressed normally, but IL and NK cell gene expression persists after T cell lineage commitment and T cell receptor ß VDJ recombination, Cd3 expression and ß-selection have been impaired. This Notch1 enhancer is inactive in double-positive (DP) thymocytes. Its aberrant reactivation at this stage in Ikaros mutants is required for leukemogenesis. Thus, the DN-specific Notch1 enhancer harnesses the regulatory architecture of DN and DP thymocytes to achieve carefully orchestrated changes in Notch1 signaling required for early lineage restrictions and normal T cell differentiation.


Assuntos
Imunidade Inata , Timócitos , Camundongos , Animais , Timócitos/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Linfócitos/metabolismo , Timo , Diferenciação Celular/genética , Linhagem da Célula/genética
7.
J Cell Biol ; 221(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35171230

RESUMO

The molecular circuitry that causes stem cells to exit from pluripotency remains largely uncharacterized. Using chromatin RNA in situ reverse transcription sequencing, we identified Peln1 as a novel chromatin RNA component in the promoter complex of Oct4, a stem cell master transcription factor gene. Peln1 was negatively associated with pluripotent status during somatic reprogramming. Peln1 overexpression caused E14 cells to exit from pluripotency, while Peln1 downregulation induced robust reprogramming. Mechanistically, we discovered that Peln1 interacted with the Oct4 promoter and recruited the DNA methyltransferase DNMT3A. By de novo altering the epigenotype in the Oct4 promoter, Peln1 dismantled the intrachromosomal loop that is required for the maintenance of pluripotency. Using RNA reverse transcription-associated trap sequencing, we showed that Peln1 targets multiple pathway genes that are associated with stem cell self-renewal. These findings demonstrate that Peln1 can act as a new epigenetic player and use a trans mechanism to induce an exit from the pluripotent state in stem cells.


Assuntos
Cromossomos de Mamíferos/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Linhagem Celular , Reprogramação Celular/genética , Metilação de DNA/genética , DNA Metiltransferase 3A/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Fator 3 de Transcrição de Octâmero , Ligação Proteica , RNA Longo não Codificante/genética
8.
Sci Immunol ; 6(65): eabi8823, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34797693

RESUMO

TNF and IL-17 are two cytokines that drive dysregulated keratinocyte activity, and their targeting is highly efficacious in patients with psoriasis, but whether these molecules act with other inflammatory factors is not clear. Here, we show that mice having a keratinocyte-specific deletion of Fn14 (Tnfrsf12a), the receptor for the TNF superfamily cytokine TWEAK (Tnfsf12), displayed reduced imiquimod-induced skin inflammation, including diminished epidermal hyperplasia and less expression of psoriasis signature genes. This corresponded with Fn14 being expressed in keratinocytes in human psoriasis lesions and TWEAK being found in several subsets of skin cells. Transcriptomic studies in human keratinocytes revealed that TWEAK strongly overlaps with IL-17A and TNF in up-regulating the expression of CXC chemokines, along with cytokines such as IL-23 and inflammation-associated proteins like S100A8/9 and SERPINB1/B9, all previously found to be highly expressed in the lesional skin of patients with psoriasis. TWEAK displayed strong synergism with TNF or IL-17A in up-regulating messenger RNA for many psoriasis-associated genes in human keratinocytes, including IL23A, IL36G, and multiple chemokines, implying that TWEAK acts with TNF and IL-17 to enhance feedback inflammatory activity. Correspondingly, therapeutic treatment of mice with anti-TWEAK was equally as effective as antibodies to IL-17A or TNF in reducing clinical and immunological features of psoriasis-like skin inflammation and combination targeting of TWEAK with either cytokine had no greater inhibitory effect, reinforcing the conclusion that all three cytokines function together. Thus, blocking TWEAK could be comparable to targeting TNF or IL-17 and might be considered as an alternate therapeutic treatment for psoriasis.


Assuntos
Citocina TWEAK/imunologia , Interleucina-17/imunologia , Queratinócitos/imunologia , Psoríase/imunologia , Fatores de Necrose Tumoral/imunologia , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Psoríase/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...