Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39091843

RESUMO

Children living with HIV have a higher risk of developing tuberculosis (TB), a disease caused by the bacterium Mycobacterium tuberculosis (Mtb). Gamma delta (γδ) T cells in the context of HIV/Mtb coinfection have been understudied in children, despite in vitro evidence suggesting γδ T cells assist with Mtb control. We investigated whether boosting a specific subset of γδ T cells, phosphoantigen-reactive Vγ9+Vδ2+ cells, could improve TB outcome using a nonhuman primate model of pediatric HIV/Mtb coinfection. Juvenile Mauritian cynomolgus macaques (MCM), equivalent to 4-8-year-old children, were infected intravenously (i.v.) with SIV. After 6 months, MCM were coinfected with a low dose of Mtb and then randomized to receive zoledronate (ZOL), a drug that increases phosphoantigen levels, (n=5; i.v.) at 3- and 17- days after Mtb accompanied by recombinant human IL-2 (s.c.) for 5 days following each ZOL injection. A similarly coinfected MCM group (n=5) was injected with saline as a control. Vγ9+Vδ2+ γδ T cell frequencies spiked in the blood, but not airways, of ZOL+IL-2-treated MCM following the first dose, however, were refractory to the second dose. At necropsy eight weeks after Mtb, ZOL+IL-2 treatment did not reduce pathology or bacterial burden. γδ T cell subset frequencies in granulomas did not differ between treatment groups. These data show that transiently boosting peripheral γδ T cells with ZOL+IL-2 soon after Mtb coinfection of SIV-infected MCM did not improve Mtb host defense.

2.
Sci Rep ; 14(1): 17031, 2024 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043722

RESUMO

Non-human primates remain the most useful and reliable pre-clinical model for many human diseases. Primate breath profiles have previously distinguished healthy animals from diseased, including non-human primates. Breath collection is relatively non-invasive, so this motivated us to define a healthy baseline breath profile that could be used in studies evaluating disease, therapies, and vaccines in non-human primates. A pilot study, which enrolled 30 healthy macaques, was conducted. Macaque breath molecules were sampled into a Tedlar bag, concentrated onto a thermal desorption tube, then desorbed and analyzed by comprehensive two-dimensional gas chromatography-time of flight mass spectrometry. These breath samples contained 2,017 features, of which 113 molecules were present in all breath samples. The core breathprint was dominated by aliphatic hydrocarbons, aromatic compounds, and carbonyl compounds. The data were internally validated with additional breath samples from a subset of 19 of these non-human primates. A critical core consisting of 23 highly abundant and invariant molecules was identified as a pragmatic breathprint set, useful for future validation studies in healthy primates.


Assuntos
Testes Respiratórios , Animais , Testes Respiratórios/métodos , Masculino , Projetos Piloto , Feminino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Macaca , Compostos Orgânicos Voláteis/análise
3.
bioRxiv ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38045242

RESUMO

Intravenous (IV) BCG delivery provides robust protection against Mycobacterium tuberculosis (Mtb) in macaques but poses safety challenges. Here, we constructed two BCG strains (BCG-TetON-DL and BCG-TetOFF-DL) in which tetracyclines regulate two phage lysin operons. Once the lysins are expressed, these strains are cleared in immunocompetent and immunocompromised mice, yet induced similar immune responses and provided similar protection against Mtb challenge as wild type BCG. Lysin induction resulted in release of intracellular BCG antigens and enhanced cytokine production by macrophages. In macaques, cessation of doxycycline administration resulted in rapid elimination of BCG-TetOFF-DL. However, IV BCG-TetOFF-DL induced increased pulmonary CD4 T cell responses compared to WT BCG and provided robust protection against Mtb challenge, with sterilizing immunity in 6 of 8 macaques, compared to 2 of 8 macaques immunized with WT BCG. Thus, a "suicide" BCG strain provides an additional measure of safety when delivered intravenously and robust protection against Mtb infection.

4.
PLoS Comput Biol ; 19(6): e1010823, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37319311

RESUMO

Tuberculosis (TB) continues to be one of the deadliest infectious diseases in the world, causing ~1.5 million deaths every year. The World Health Organization initiated an End TB Strategy that aims to reduce TB-related deaths in 2035 by 95%. Recent research goals have focused on discovering more effective and more patient-friendly antibiotic drug regimens to increase patient compliance and decrease emergence of resistant TB. Moxifloxacin is one promising antibiotic that may improve the current standard regimen by shortening treatment time. Clinical trials and in vivo mouse studies suggest that regimens containing moxifloxacin have better bactericidal activity. However, testing every possible combination regimen with moxifloxacin either in vivo or clinically is not feasible due to experimental and clinical limitations. To identify better regimens more systematically, we simulated pharmacokinetics/pharmacodynamics of various regimens (with and without moxifloxacin) to evaluate efficacies, and then compared our predictions to both clinical trials and nonhuman primate studies performed herein. We used GranSim, our well-established hybrid agent-based model that simulates granuloma formation and antibiotic treatment, for this task. In addition, we established a multiple-objective optimization pipeline using GranSim to discover optimized regimens based on treatment objectives of interest, i.e., minimizing total drug dosage and lowering time needed to sterilize granulomas. Our approach can efficiently test many regimens and successfully identify optimal regimens to inform pre-clinical studies or clinical trials and ultimately accelerate the TB regimen discovery process.


Assuntos
Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Animais , Camundongos , Antituberculosos , Moxifloxacina/uso terapêutico , Tuberculose/tratamento farmacológico
5.
Infect Immun ; 91(5): e0055822, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37039653

RESUMO

Pre-existing HIV infection increases tuberculosis (TB) risk in children. Antiretroviral therapy (ART) reduces, but does not abolish, this risk in children with HIV. The immunologic mechanisms involved in TB progression in both HIV-naive and HIV-infected children have not been explored. Much of our current understanding is based on human studies in adults and adult animal models. In this study, we sought to model childhood HIV/Mycobacterium tuberculosis (Mtb) coinfection in the setting of ART and characterize T cells during TB progression. Macaques equivalent to 4 to 8 year-old children were intravenously infected with SIVmac239M, treated with ART 3 months later, and coinfected with Mtb 3 months after initiating ART. SIV-naive macaques were similarly infected with Mtb alone. TB pathology and total Mtb burden did not differ between SIV-infected, ART-treated and SIV-naive macaques, although lung Mtb burden was lower in SIV-infected, ART-treated macaques. No major differences in frequencies of CD4+ and CD8+ T cells and unconventional T cell subsets (Vγ9+ γδ T cells, MAIT cells, and NKT cells) in airways were observed between SIV-infected, ART-treated and SIV-naive macaques over the course of Mtb infection, with the exception of CCR5+ CD4+ and CD8+ T cells which were slightly lower. CD4+ and CD8+ T cell frequencies did not differ in the lung granulomas. Immune checkpoint marker levels were similar, although ki-67 levels in CD8+ T cells were elevated. Thus, ART treatment of juvenile macaques, 3 months after SIV infection, resulted in similar progression of Mtb and T cell responses compared to Mtb in SIV-naive macaques.


Assuntos
Antirretrovirais , Modelos Animais de Doenças , Macaca , Mycobacterium tuberculosis , Vírus da Imunodeficiência Símia , Tuberculose , Humanos , Pré-Escolar , Criança , Animais , Tuberculose/complicações , Tuberculose/imunologia , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Vírus da Imunodeficiência Símia/fisiologia , Síndrome de Imunodeficiência Adquirida dos Símios/complicações , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Linfócitos T/imunologia , Antirretrovirais/administração & dosagem , Mycobacterium tuberculosis/fisiologia
6.
J Infect Dis ; 227(4): 592-601, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36611221

RESUMO

Mycobacterium tuberculosis infection outcomes have been described as active tuberculosis or latent infection but a spectrum of outcomes is now recognized. We used a nonhuman primate model, which recapitulates human infection, to characterize the clinical, microbiologic, and radiographic patterns associated with developing latent M. tuberculosis infection. Four patterns were identified. "Controllers" had normal erythrocyte sedimentation rate (ESR) without M. tuberculosis growth in bronchoalveolar lavage or gastric aspirate (BAL/GA). "Early subclinicals" showed transient ESR elevation and/or M. tuberculosis growth on BAL/GA for 60 days postinfection, "mid subclinicals" were positive for 90 days, and "late subclinicals" were positive intermittently, despite the absence of clinical disease. Variability was noted regarding granuloma formation, lung/lymph node metabolic activity, lung/lymph node bacterial burden, gross pathology, and extrapulmonary disease. Like human M. tuberculosis infection, this highlights the heterogeneity associated with the establishment of latent infection, underscoring the need to understand the clinical spectrum and risk factors associated with severe disease.


Assuntos
Tuberculose Latente , Mycobacterium tuberculosis , Tuberculose , Animais , Humanos , Tuberculose Latente/diagnóstico por imagem , Tuberculose Latente/microbiologia , Pulmão/patologia , Macaca
7.
ACS Infect Dis ; 7(8): 2264-2276, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34255474

RESUMO

Neutrophilic inflammation correlates with severe tuberculosis (TB), a disease caused by Mycobacterium tuberculosis (Mtb). Granulomas are lesions that form in TB, and a PET probe for following neutrophil recruitment to granulomas could predict disease progression. We tested the formyl peptide receptor 1 (FPR1)-targeting peptide FLFLF in Mtb-infected macaques. Preliminary studies in mice demonstrated specificity for neutrophils. In macaques, 64Cu-FLFLF was retained in lung granulomas and analysis of lung granulomas identified positive correlations between 64Cu-FLFLF and neutrophil and macrophage numbers (R2 = 0.8681 and 0.7643, respectively), and weaker correlations for T cells and B cells (R2 = 0.5744 and 0.5908, respectively), suggesting that multiple cell types drive 64Cu-FLFLF avidity. By PET/CT imaging, we found that granulomas retained 64Cu-FLFLF but with less avidity than the glucose analog 18F-FDG. These studies suggest that neutrophil-specific probes have potential PET/CT applications in TB, but important issues need to be addressed before they can be used in nonhuman primates and humans.


Assuntos
Neutrófilos , Receptores de Formil Peptídeo , Animais , Granuloma/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Macaca fascicularis , Macrófagos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada
8.
PLoS Pathog ; 12(7): e1005739, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27379816

RESUMO

Mycobacterium tuberculosis infection presents across a spectrum in humans, from latent infection to active tuberculosis. Among those with latent tuberculosis, it is now recognized that there is also a spectrum of infection and this likely contributes to the variable risk of reactivation tuberculosis. Here, functional imaging with 18F-fluorodeoxygluose positron emission tomography and computed tomography (PET CT) of cynomolgus macaques with latent M. tuberculosis infection was used to characterize the features of reactivation after tumor necrosis factor (TNF) neutralization and determine which imaging characteristics before TNF neutralization distinguish reactivation risk. PET CT was performed on latently infected macaques (n = 26) before and during the course of TNF neutralization and a separate set of latently infected controls (n = 25). Reactivation occurred in 50% of the latently infected animals receiving TNF neutralizing antibody defined as development of at least one new granuloma in adjacent or distant locations including extrapulmonary sites. Increased lung inflammation measured by PET and the presence of extrapulmonary involvement before TNF neutralization predicted reactivation with 92% sensitivity and specificity. To define the biologic features associated with risk of reactivation, we used these PET CT parameters to identify latently infected animals at high risk for reactivation. High risk animals had higher cumulative lung bacterial burden and higher maximum lesional bacterial burdens, and more T cells producing IL-2, IL-10 and IL-17 in lung granulomas as compared to low risk macaques. In total, these data support that risk of reactivation is associated with lung inflammation and higher bacterial burden in macaques with latent Mtb infection.


Assuntos
Tuberculose Latente/diagnóstico por imagem , Tuberculose Latente/microbiologia , Tuberculose Latente/patologia , Ativação Viral , Latência Viral , Animais , Modelos Animais de Doenças , Citometria de Fluxo , Processamento de Imagem Assistida por Computador , Macaca fascicularis , Mycobacterium tuberculosis , Reação em Cadeia da Polimerase , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada
9.
Pathog Dis ; 71(2): 207-12, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24838691

RESUMO

The Regional Biocontainment Laboratory (RBL) at the University of Pittsburgh is a state-of-the-art ABSL-3 facility that supports research on highly pathogenic viruses and bacteria. Recent advances in radiologic imaging provide several noninvasive, in vivo imaging modalities that can be used to longitudinally monitor animals following experimental infection or vaccination. The University of Pittsburgh RBL provides digital radiography, bioluminescence imaging, and PET/CT. Operating these platforms in an ABSL-3 poses unique challenges. This review will discuss the development and refinement of these imaging platforms in high containment, emphasizing specific challenges and how they were overcome.


Assuntos
Infecções Bacterianas/diagnóstico , Infecções Bacterianas/patologia , Contenção de Riscos Biológicos , Imagem Óptica/métodos , Viroses/diagnóstico , Viroses/patologia , Animais , Modelos Animais de Doenças , Pennsylvania , Tecnologia Radiológica/métodos
10.
Infect Immun ; 82(6): 2400-4, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24664509

RESUMO

Cynomolgus macaques infected with low-dose Mycobacterium tuberculosis develop both active tuberculosis and latent infection similar to those of humans, providing an opportunity to study the clinically silent early events in infection. (18)Fluorodeoxyglucose radiotracer with positron emission tomography coregistered with computed tomography (FDG PET/CT) provides a noninvasive method to measure disease progression. We sought to determine temporal patterns of granuloma evolution that distinguished active-disease and latent outcomes. Macaques (n = 10) were infected with low-dose M. tuberculosis with FDG PET/CT performed during infection. At 24 weeks postinfection, animals were classified as having active disease (n = 3) or latent infection (n = 6), with one "percolator" monkey. Imaging characteristics (e.g., lesion number, metabolic activity, size, mineralization, and distribution of lesions) were compared among active and latent groups. As early as 3 weeks postinfection, more pulmonary granulomas were observed in animals that would later develop active disease than in those that would develop latent infection. Over time, new lesions developed in active-disease animals but not in latent animals. Granulomas and mediastinal lymph nodes from active-disease but not latent animals consistently increased in metabolic activity at early time points. The presence of fewer lesions at 3 weeks and the lack of new lesion development in animals with latent infection suggest that innate and rapid adaptive responses are critical to preventing active tuberculosis. A greater emphasis on innate responses and/or rapid recruitment of adaptive responses, especially in the airway, should be emphasized in newer vaccine strategies.


Assuntos
Fluordesoxiglucose F18 , Doenças dos Macacos/diagnóstico , Mycobacterium tuberculosis , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada por Raios X/métodos , Tuberculose/diagnóstico , Animais , Progressão da Doença , Macaca fascicularis , Doenças dos Macacos/patologia , Valor Preditivo dos Testes , Tuberculose/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...