Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Annu Rev Immunol ; 40: 1-14, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-34871102

RESUMO

I've had serious misgivings about writing this article, because from living the experience day by day, it's hard to believe my accomplishments merit the attention. To skirt this roadblock, I forced myself to pretend I was in a conversation with my trainees, trying to distill the central driving forces of my career in science. The below chronicles my evolution from would-be astronaut/ballerina to budding developmental biologist to devoted T cell immunologist. It traces my work from a focus on intrathymic events that mold developing T cells into self-major histocompatibility complex (MHC)-restricted lymphocytes to extrathymic events that fine-tune the T cell receptor (TCR) repertoire and impose the finishing touches on T cell maturation. It is a story of a few personal attributes multiplied by generous mentors, good luck, hard work, perseverance, and knowing when to step down.


Assuntos
Complexo Principal de Histocompatibilidade , Linfócitos T , Animais , Diferenciação Celular , Humanos , Timo
2.
Front Immunol ; 11: 1342, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714327

RESUMO

Androgens have profound effects on T cell homeostasis, including regulation of thymic T lymphopoiesis (thymopoiesis) and production of recent thymic emigrants (RTEs), i. e., immature T cells that derive from the thymus and continue their maturation to mature naïve T cells in secondary lymphoid organs. Here we investigated the androgen target cell for effects on thymopoiesis and RTEs in spleen and lymph nodes. Male mice with a general androgen receptor knockout (G-ARKO), T cell-specific (T-ARKO), or epithelial cell-specific (E-ARKO) knockout were examined. G-ARKO mice showed increased thymus weight and increased numbers of thymic T cell progenitors. These effects were not T cell-intrinsic, since T-ARKO mice displayed unaltered thymus weight and thymopoiesis. In line with a role for thymic epithelial cells (TECs), E-ARKO mice showed increased thymus weight and numbers of thymic T cell progenitors. Further, E-ARKO mice had more CD4+ and CD8+ T cells in spleen and an increased frequency of RTEs among T cells in spleen and lymph nodes. Depletion of the androgen receptor in epithelial cells was also associated with a small shift in the relative number of cortical (reduced) and medullary (increased) TECs and increased CCL25 staining in the thymic medulla, similar to previous observations in castrated mice. In conclusion, we demonstrate that the thymic epithelium is a target compartment for androgen-mediated regulation of thymopoiesis and consequently the generation of RTEs.


Assuntos
Células Epiteliais/metabolismo , Linfopoese/imunologia , Receptores Androgênicos/metabolismo , Linfócitos T/imunologia , Timo/imunologia , Animais , Células Epiteliais/imunologia , Masculino , Camundongos , Camundongos Knockout , Receptores Androgênicos/imunologia , Linfócitos T/metabolismo , Timo/citologia , Timo/metabolismo
3.
J Immunol ; 201(6): 1627-1632, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30068595

RESUMO

Recent thymic emigrants (RTEs) are peripheral T cells that have most recently completed selection and thymic egress and constitute a population that is phenotypically and functionally distinct from its more mature counterpart. Ag-activated RTEs are less potent effectors than are activated mature T cells, due in part to reduced aerobic glycolysis (correctable by exogenous IL-2), which in turn impacts IFN-γ production. Mitochondria serve as nodal regulators of cell function, but their contribution to the unique biology of RTEs is unknown. In this study, we show that activated mouse RTEs have impaired oxidative phosphorylation, even in the presence of exogenous IL-2. This altered respiratory phenotype is the result of decreased CD28 signaling, reduced glutaminase induction, and diminished mitochondrial mass in RTEs relative to mature T cells. These results suggest an uncoupling whereby IL-2 tunes the rate of RTE glycolytic metabolism, whereas the unique profile of RTE mitochondrial metabolism is "hard wired."


Assuntos
Linfócitos T CD8-Positivos/imunologia , Movimento Celular/imunologia , Glicólise/imunologia , Ativação Linfocitária , Mitocôndrias/imunologia , Timo/imunologia , Animais , Antígenos CD28/genética , Antígenos CD28/imunologia , Linfócitos T CD8-Positivos/citologia , Movimento Celular/genética , Glicólise/genética , Interleucina-2/genética , Interleucina-2/imunologia , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Timo/citologia
5.
Curr Opin Immunol ; 51: 1-6, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29257954

RESUMO

Recent thymic emigrants (RTEs) are those peripheral T cells that have most recently completed thymic development and egress. Over the past decade, significant advances have been made in understanding the cell-extrinsic and cell-intrinsic requirements for RTE maturation to mature naïve (MN) T cells and in detailing the functional differences that characterize these two T cell populations. Much of this work has suggested that RTEs are hypo-functional versions of more mature T cells. However, recent evidence has indicated that rather than being defective T cells, RTEs are exquisitely adapted to their cellular niche. In this review, we argue that RTEs are not flawed mature T cells but are adapted to fill an underpopulated T cell compartment, while maintaining self tolerance and possessing the capacity to mount robust immune responses.


Assuntos
Diferenciação Celular , Movimento Celular , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/fisiologia , Timócitos/citologia , Timócitos/fisiologia , Timo/citologia , Timo/fisiologia , Adaptação Biológica , Animais , Biomarcadores , Microambiente Celular , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Tolerância Imunológica , Ativação Linfocitária , Transdução de Sinais
6.
J Immunol ; 198(12): 4575-4580, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28507025

RESUMO

Recent thymic emigrants (RTEs) are the youngest peripheral T cells that have completed thymic selection and egress to the lymphoid periphery. RTEs are functionally distinct from their more mature but still naive T cell counterparts, because they exhibit dampened proliferation and reduced cytokine production upon activation. In this article, we show that, compared with more mature but still naive T cells, RTEs are impaired in their ability to perform aerobic glycolysis following activation. Impaired metabolism underlies the reduced IFN-γ production observed in activated RTEs. This failure to undergo Ag-induced aerobic glycolysis is caused by reduced mTORC1 activity and diminished Myc induction in RTEs. Critically, exogenous IL-2 restores Myc expression in RTEs, driving aerobic glycolysis and IFN-γ production to the level of mature T cells. These results reveal a previously unknown metabolic component to postthymic T cell maturation.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Movimento Celular , Glicólise , Ativação Linfocitária , Timo/citologia , Animais , Diferenciação Celular , Genes myc , Glicólise/efeitos dos fármacos , Interferon gama/biossíntese , Interferon gama/imunologia , Interleucina-2/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Timo/imunologia
7.
Cell Rep ; 19(1): 114-124, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28380351

RESUMO

Many pathogens initiate infection at mucosal surfaces, and tissue-resident memory T (Trm) cells play an important role in protective immunity, yet the tissue-specific signals that regulate Trm differentiation are poorly defined. During Yersinia infection, CD8+ T cell recruitment to areas of inflammation within the intestine is required for differentiation of the CD103-CD69+ Trm subset. Intestinal proinflammatory microenvironments have elevated interferon (IFN)-ß and interleukin-12 (IL-12), which regulated Trm markers, including CD103. Type I interferon-receptor- or IL-12-receptor-deficient T cells functioned similarly to wild-type (WT) cells during infection; however, the inability of T cells to respond to inflammation resulted in defective differentiation of CD103-CD69+ Trm cells and reduced Trm persistence. Intestinal macrophages were the main producers of IFN-ß and IL-12 during infection, and deletion of CCR2+ IL-12-producing cells reduced the size of the CD103- Trm population. These data indicate that intestinal inflammation drives phenotypic diversity and abundance of Trm cells for optimal tissue-specific immunity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular , Memória Imunológica/imunologia , Inflamação/imunologia , Intestinos/imunologia , Infecções por Yersinia pseudotuberculosis/imunologia , Adjuvantes Imunológicos/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/genética , Antígenos de Diferenciação de Linfócitos T/metabolismo , Antivirais/metabolismo , Cadeias alfa de Integrinas/genética , Cadeias alfa de Integrinas/metabolismo , Interferons/metabolismo , Interleucina-12/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores CCR2/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
8.
J Immunol ; 198(2): 553, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28069748
9.
J Exp Med ; 213(6): 913-20, 2016 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-27139493

RESUMO

T cell development requires a period of postthymic maturation. Why this is the case has remained a mystery, particularly given the rigors of intrathymic developmental checkpoints, successfully traversed by only ∼5% of thymocytes. We now show that the first few weeks of T cell residence in the lymphoid periphery define a period of heightened susceptibility to tolerance induction to tissue-restricted antigens (TRAs), the outcome of which depends on the context in which recent thymic emigrants (RTEs) encounter antigen. After encounter with TRAs in the absence of inflammation, RTEs exhibited defects in proliferation, diminished cytokine production, elevated expression of anergy-associated genes, and diminished diabetogenicity. These properties were mirrored in vitro by enhanced RTE susceptibility to regulatory T cell-mediated suppression. In the presence of inflammation, RTEs and mature T cells were, in contrast, equally capable of inducing diabetes, proliferating, and producing cytokines. Thus, recirculating RTEs encounter TRAs during a transitional developmental stage that facilitates tolerance induction, but inflammation converts antigen-exposed, tolerance-prone RTEs into competent effector cells.


Assuntos
Movimento Celular/imunologia , Tolerância Imunológica/fisiologia , Imunidade Celular/fisiologia , Linfócitos T Reguladores/imunologia , Timo/imunologia , Animais , Inflamação/imunologia , Camundongos , Camundongos Knockout , Linfócitos T Reguladores/citologia , Timo/citologia
10.
J Immunol ; 196(6): 2450-5, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26873989

RESUMO

The youngest peripheral T cells (recent thymic emigrants [RTEs]) are functionally distinct from naive T cells that have completed postthymic maturation. We assessed the RTE memory response and found that RTEs produced less granzyme B than their mature counterparts during infection but proliferated more and, therefore, generated equivalent target killing in vivo. Postinfection, RTE numbers contracted less dramatically than those of mature T cells, but RTEs were delayed in their transition to central memory, displaying impaired expression of CD62L, IL-2, Eomesodermin, and CXCR4, which resulted in impaired bone marrow localization. RTE-derived and mature memory cells expanded equivalently during rechallenge, indicating that the robust proliferative capacity of RTEs was maintained independently of central memory phenotype. Thus, the diminished effector function and delayed central memory differentiation of RTE-derived memory cells are counterbalanced by their increased proliferative capacity, driving the efficacy of the RTE response to that of mature T cells.


Assuntos
Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Ativação Linfocitária/imunologia , Transferência Adotiva , Animais , Diferenciação Celular/imunologia , Separação Celular , Citometria de Fluxo , Camundongos , Camundongos Transgênicos , Timo/citologia , Timo/imunologia
13.
J Exp Med ; 212(5): 715-28, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25918344

RESUMO

Immune control of persistent infection with Mycobacterium tuberculosis (Mtb) requires a sustained pathogen-specific CD4 T cell response; however, the molecular pathways governing the generation and maintenance of Mtb protective CD4 T cells are poorly understood. Using MHCII tetramers, we show that Mtb-specific CD4 T cells are subject to ongoing antigenic stimulation. Despite this chronic stimulation, a subset of PD-1(+) cells is maintained within the lung parenchyma during tuberculosis (TB). When transferred into uninfected animals, these cells persist, mount a robust recall response, and provide superior protection to Mtb rechallenge when compared to terminally differentiated Th1 cells that reside preferentially in the lung-associated vasculature. The PD-1(+) cells share features with memory CD4 T cells in that their generation and maintenance requires intrinsic Bcl6 and intrinsic ICOS expression. Thus, the molecular pathways required to maintain Mtb-specific CD4 T cells during ongoing infection are similar to those that maintain memory CD4 T cells in scenarios of antigen deprivation. These results suggest that vaccination strategies targeting the ICOS and Bcl6 pathways in CD4 T cells may provide new avenues to prevent TB.


Assuntos
Proteínas de Ligação a DNA/imunologia , Memória Imunológica , Proteína Coestimuladora de Linfócitos T Induzíveis/imunologia , Mycobacterium tuberculosis/imunologia , Células Th1/imunologia , Tuberculose Pulmonar/imunologia , Animais , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica/imunologia , Imunidade Celular/genética , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-bcl-6 , Células Th1/patologia , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/patologia
14.
J Immunol ; 194(4): 1677-85, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25582857

RESUMO

All aerobic cells and organisms must synthesize heme from the amino acid glycine and the tricarboxylic acid cycle intermediate succinyl CoA for incorporation into hemoproteins, such as the cytochromes needed for oxidative phosphorylation. Most studies on heme regulation have been done in erythroid cells or hepatocytes; however, much less is known about heme metabolism in other cell types. The feline leukemia virus subgroup C receptor (FLVCR) is a 12-transmembrane domain surface protein that exports heme from cells, and it was shown to be required for erythroid development. In this article, we show that deletion of Flvcr in murine hematopoietic precursors caused a complete block in αß T cell development at the CD4(+)CD8(+) double-positive stage, although other lymphoid lineages were not affected. Moreover, FLVCR was required for the proliferation and survival of peripheral CD4(+) and CD8(+) T cells. These studies identify a novel and unexpected role for FLVCR, a major facilitator superfamily metabolite transporter, in T cell development and suggest that heme metabolism is particularly important in the T lineage.


Assuntos
Diferenciação Celular/imunologia , Heme/imunologia , Proteínas de Membrana Transportadoras/imunologia , Receptores Virais/imunologia , Linfócitos T/imunologia , Transferência Adotiva , Animais , Separação Celular , Sobrevivência Celular/imunologia , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
J Immunol ; 193(7): 3262-6, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25172492

RESUMO

To explore the TCR sensitivity of recent thymic emigrants (RTEs), we triggered T cells with altered peptide ligands (APLs). Upon peptide stimulation in vitro, RTEs exhibited increased TCR signal transduction, and following infection in vivo with APL-expressing bacteria, CD8 RTEs expanded to a greater extent in response to low-affinity Ags than did their mature T cell counterparts. RTEs skewed to short-lived effector cells in response to all APLs but also were characterized by diminished cytokine production. RTEs responding to infection expressed increased levels of VLA-4, with consequent improved entry into inflamed tissue and pathogen clearance. These positive outcomes were offset by the capacity of RTEs to elicit autoimmunity. Overall, salient features of CD8 RTE biology should inform strategies to improve neonatal vaccination and therapies for cancer and HIV, because RTEs make up a large proportion of the T cells in lymphodepleted environments.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Movimento Celular/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia , Timo/imunologia , Animais , Antígenos/genética , Antígenos/imunologia , Linfócitos T CD8-Positivos/patologia , Movimento Celular/genética , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Integrina alfa4beta1/genética , Integrina alfa4beta1/imunologia , Camundongos , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais/genética , Timo/patologia
16.
Proc Natl Acad Sci U S A ; 111(15): 5652-7, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24706795

RESUMO

Peripheral CD4 T cells in Vß5 transgenic (Tg) C57BL/6J mice undergo tolerance to an endogenous superantigen encoded by mouse mammary tumor virus 8 (Mtv-8) by either deletion or T-cell receptor (TCR) revision. Revision is a process by which surface expression of the Vß5(+) TCR is down-regulated in response to Mtv-8 and recombination activating genes are expressed to drive rearrangement of the endogenous TCRß locus, effecting cell rescue through the expression of a newly generated, non-self-reactive TCR. In an effort to identify the microenvironment in which revision takes place, we show here that the proportion of T follicular helper cells (Tfh) and production of high-affinity antibody during a primary response are increased in Vß5 Tg mice in an Mtv-8-dependent manner. Revising T cells have a Tfh-like surface phenotype and transcription factor profile, with elevated expression of B-cell leukemia/lymphoma 6 (Bcl-6), CXC chemokine receptor 5, programmed death-1, and other Tfh-associated markers. Efficient revision requires Bcl-6 and is inhibited by B lymphocyte-induced maturation protein-1. Revision completes less efficiently in the absence of signaling lymphocytic activation molecule-associated protein although initiation proceeds normally. These data indicate that Tfh formation is required for the initiation of revision and germinal-center interactions for its completion. The germinal center is known to provide a confined space in which B-cell antigen receptors undergo selection. Our data extend the impact of this selective microenvironment into the arena of T cells, suggesting that this fluid structure also provides a regulatory environment in which TCR revision can safely take place.


Assuntos
Rearranjo Gênico do Linfócito T/imunologia , Centro Germinativo/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Primers do DNA/genética , Citometria de Fluxo , Camundongos , Reação em Cadeia da Polimerase , Receptores de Antígenos de Linfócitos T/metabolismo , Recombinação Genética/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T Auxiliares-Indutores/metabolismo
17.
PLoS Genet ; 9(8): e1003708, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23990801

RESUMO

Most yeast ribosomal protein genes are duplicated and their characterization has led to hypotheses regarding the existence of specialized ribosomes with different subunit composition or specifically-tailored functions. In yeast, ribosomal protein genes are generally duplicated and evidence has emerged that paralogs might have specific roles. Unlike yeast, most mammalian ribosomal proteins are thought to be encoded by a single gene copy, raising the possibility that heterogenous populations of ribosomes are unique to yeast. Here, we examine the roles of the mammalian Rpl22, finding that Rpl22(-/-) mice have only subtle phenotypes with no significant translation defects. We find that in the Rpl22(-/-) mouse there is a compensatory increase in Rpl22-like1 (Rpl22l1) expression and incorporation into ribosomes. Consistent with the hypothesis that either ribosomal protein can support translation, knockdown of Rpl22l1 impairs growth of cells lacking Rpl22. Mechanistically, Rpl22 regulates Rpl22l1 directly by binding to an internal hairpin structure and repressing its expression. We propose that ribosome specificity may exist in mammals, providing evidence that one ribosomal protein can influence composition of the ribosome by regulating its own paralog.


Assuntos
Proteínas de Ligação a RNA/genética , RNA/genética , Proteínas Ribossômicas/genética , Ribossomos/genética , Homologia de Sequência de Aminoácidos , Sequência de Aminoácidos , Animais , Regulação da Expressão Gênica , Camundongos , Dados de Sequência Molecular , Biossíntese de Proteínas , RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo
19.
Clin Dev Immunol ; 2013: 781320, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23762096

RESUMO

One of the challenges faced by the infant immune system is learning to distinguish the myriad of foreign but nonthreatening antigens encountered from those expressed by true pathogens. This balance is reflected in the diminished production of proinflammatory cytokines by both innate and adaptive immune cells in the infant. A downside of this bias is that several factors critical for controlling Mycobacterium tuberculosis infection are significantly restricted in infants, including TNF, IL-1, and IL-12. Furthermore, infant T cells are inherently less capable of differentiating into IFN- γ -producing T cells. As a result, infected infants are 5-10 times more likely than adults to develop active tuberculosis (TB) and have higher rates of severe disseminated disease, including miliary TB and meningitis. Infant TB is a fundamentally different disease than TB in immune competent adults. Immunotherapeutics, therefore, should be specifically evaluated in infants before they are routinely employed to treat TB in this age group. Modalities aimed at reducing inflammation, which may be beneficial for adjunctive therapy of some forms of TB in older children and adults, may be of no benefit or even harmful in infants who manifest much less inflammatory disease.


Assuntos
Antituberculosos/uso terapêutico , Imunidade Inata , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Tuberculose/fisiopatologia , Adulto , Fatores Etários , Antituberculosos/farmacologia , Criança , Suscetibilidade a Doenças , Humanos , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico , Lactente , Interferon gama/biossíntese , Interferon gama/imunologia , Interleucina-1/biossíntese , Interleucina-1/imunologia , Interleucina-12/biossíntese , Interleucina-12/imunologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/patogenicidade , Tuberculose/tratamento farmacológico
20.
J Immunol ; 190(12): 6180-6, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23686491

RESUMO

Recent thymic emigrants (RTEs) are the youngest T cells in the lymphoid periphery and exhibit phenotypic and functional characteristics distinct from those of their more mature counterparts in the naive peripheral T cell pool. We show in this study that the Il2 and Il4 promoter regions of naive CD4(+) RTEs are characterized by site-specific hypermethylation compared with those of both mature naive (MN) T cells and the thymocyte precursors of RTEs. Thus, RTEs do not merely occupy a midpoint between the thymus and the mature T cell pool, but represent a distinct transitional T cell population. Furthermore, RTEs and MN T cells exhibit distinct CpG DNA methylation patterns both before and after activation. Compared with MN T cells, RTEs express higher levels of several enzymes that modify DNA methylation, and inhibiting methylation during culture allows RTEs to reach MN T cell levels of cytokine production. Collectively, these data suggest that the functional differences that distinguish RTEs from MN T cells are influenced by epigenetic mechanisms and provide clues to a mechanistic basis for postthymic maturation.


Assuntos
Diferenciação Celular/genética , Citocinas/genética , Metilação de DNA/imunologia , Subpopulações de Linfócitos T/citologia , Linfócitos T/citologia , Timócitos/citologia , Animais , Diferenciação Celular/imunologia , Separação Celular , Citocinas/imunologia , Metilação de DNA/genética , Citometria de Fluxo , Interleucina-2/genética , Interleucina-4/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Subpopulações de Linfócitos T/imunologia , Linfócitos T/imunologia , Timócitos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...