Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 120(10): 2890-2906, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37376851

RESUMO

Eukaryotic cell-free protein synthesis (CFPS) can accelerate expression and high-throughput analysis of complex proteins with functionally relevant post-translational modifications (PTMs). However, low yields and difficulties scaling such systems have prevented their widespread adoption in protein research and manufacturing. Here, we provide detailed demonstrations for the capabilities of a CFPS system derived from Nicotiana tabacum BY-2 cell culture (BY-2 lysate; BYL). BYL is able to express diverse, functional proteins at high yields in 48 h, complete with native disulfide bonds and N-glycosylation. An optimized version of the technology is commercialized as ALiCE® and advances in scaling of BYL production methodologies now allow scaling of eukaryotic CFPS reactions. We show linear, lossless scale-up of batch mode protein expression from 100 µL microtiter plates to 10 and 100 mL volumes in Erlenmeyer flasks, culminating in preliminary data from a litre-scale reaction in a rocking-type bioreactor. Together, scaling across a 20,000x range is achieved without impacting product yields. Production of multimeric virus-like particles from the BYL cytosolic fraction were then shown, followed by functional expression of multiple classes of complex, difficult-to-express proteins using the native microsomes of the BYL CFPS. Specifically: a dimeric enzyme; a monoclonal antibody; the SARS-CoV-2 receptor-binding domain; a human growth factor; and a G protein-coupled receptor membrane protein. Functional binding and activity are demonstrated, together with in-depth PTM characterization of purified proteins through disulfide bond and N-glycan analysis. Taken together, BYL is a promising end-to-end R&D to manufacturing platform with the potential to significantly reduce the time-to-market for high value proteins and biologics.


Assuntos
Biotecnologia , COVID-19 , Humanos , Biotecnologia/métodos , Nicotiana/metabolismo , COVID-19/metabolismo , SARS-CoV-2/metabolismo , Biossíntese de Proteínas , Anticorpos Monoclonais/metabolismo , Dissulfetos/metabolismo , Sistema Livre de Células/metabolismo
2.
Front Immunol ; 14: 1088852, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776898

RESUMO

Several vaccine platforms have been developed to fight pathogenic threats, with Virus-Like Particles (VLPs) representing a very promising alternative to traditional platforms. VLPs trigger strong and lasting humoral and cellular immune responses with fewer safety concerns and higher stability than other platforms. The use of extensively characterized carrier VLPs modified with heterologous antigens was proposed to circumvent the viral complexity of specific viruses that could lead to poor VLP assembly and yields. Although carrier VLPs have been successfully produced in a wide variety of cell-based systems, these are limited by low protein yields and protracted clone selection and optimization workflows that limit VLP screening approaches. In response, we have demonstrated the cell-free protein synthesis (CFPS) of several variants of the hepatitis B core (HBc) carrier VLP using a high-yielding tobacco BY-2 lysate (BYL). High VLP yields in the BYL system allowed in-depth characterization of HBc variants. Insertion of heterologous sequences at the spike region of the HBc monomer proved more structurally demanding than at the N-terminus but removal of the C-terminal domain allowed higher particle flexibility and insert acceptance, albeit at the expense of thermal and chemical stability. We also proved the possibility to scale the CFPS reaction up to 1L in batch mode to produce 0.45 grams of the native HBc VLP within a 48-hour reaction window. A maximum yield of 820 µg/ml of assembled VLP particles was observed at the 100µl scale and most remarkably the CFPS reaction was successfully scaled from 50µl to 1L without any reduction in protein yield across this 20,000-fold difference in reaction volumes. We subsequently proved the immunogenicity of BYL-derived VLPs, as flow cytometry and microscopy clearly showed prompt recognition and endocytosis of fluorescently labelled VLPs by human dendritic cells. Triggering of inflammatory cytokine production in human peripheral blood mononuclear cells was also quantitated using a multiplex assay. This research establishes BYL as a tool for rapid production and microscale screening of VLP variants with subsequent manufacturing possibilities across scales, thus accelerating discovery and implementation of new vaccine candidates using carrier VLPs.


Assuntos
Leucócitos Mononucleares , Nicotiana , Humanos , Nicotiana/genética
3.
bioRxiv ; 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36380753

RESUMO

Eukaryotic cell-free protein synthesis (CFPS) systems have the potential to simplify and speed up the expression and high-throughput analysis of complex proteins with functionally relevant post-translational modifications (PTMs). However, low yields and the inability to scale such systems have so far prevented their widespread adoption in protein research and manufacturing. Here, we present a detailed demonstration for the capabilities of a CFPS system derived from Nicotiana tabacum BY-2 cell culture (BY-2 lysate; BYL). BYL is able to express diverse, functional proteins at high yields in under 48 hours, complete with native disulfide bonds and N-glycosylation. An optimised version of the technology is commercialised as 'ALiCE ® ', engineered for high yields of up to 3 mg/mL. Recent advances in the scaling of BYL production methodologies have allowed scaling of the CFPS reaction. We show simple, linear scale-up of batch mode reporter proten expression from a 100 µL microtiter plate format to 10 mL and 100 mL volumes in standard Erlenmeyer flasks, culminating in preliminary data from 1 L reactions in a CELL-tainer® CT20 rocking motion bioreactor. As such, these works represent the first published example of a eukaryotic CFPS reaction scaled past the 10 mL level by several orders of magnitude. We show the ability of BYL to produce the simple reporter protein eYFP and large, multimeric virus-like particles directly in the cytosolic fraction. Complex proteins are processed using the native microsomes of BYL and functional expression of multiple classes of complex, difficult-to-express proteins is demonstrated, specifically: a dimeric, glycoprotein enzyme, glucose oxidase; the monoclonal antibody adalimumab; the SARS-Cov-2 receptor-binding domain; human epidermal growth factor; and a G protein-coupled receptor membrane protein, cannabinoid receptor type 2. Functional binding and activity are shown using a combination of surface plasmon resonance techniques, a serology-based ELISA method and a G protein activation assay. Finally, in-depth post-translational modification (PTM) characterisation of purified proteins through disulfide bond and N-glycan analysis is also revealed - previously difficult in the eukaryotic CFPS space due to limitations in reaction volumes and yields. Taken together, BYL provides a real opportunity for screening of complex proteins at the microscale with subsequent amplification to manufacturing-ready levels using off-the-shelf protocols. This end-to-end platform suggests the potential to significantly reduce cost and the time-to-market for high value proteins and biologics.

4.
Methods Mol Biol ; 2480: 113-124, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35616861

RESUMO

Plant cell-free lysates contain all the cellular components of the protein biosynthesis machinery, providing an alternative to intact plant cells, tissues, and whole plants for the production of recombinant proteins. Cell-free lysates achieve rapid protein production (within hours or days) and allow the synthesis of proteins that are cytotoxic or unstable in living cells. The open nature of cell-free lysates and their homogeneous and reproducible performance is ideal for protein production, especially for screening applications, allowing the direct addition of nucleic acid templates encoding proteins of interest, as well as other components such as enzyme substrates, chaperones, artificial amino acids, or labeling molecules. Here we describe procedures for the production of recombinant proteins in the ALiCE (Almost Living Cell-free Expression) system, a lysate derived from tobacco cell suspension cultures that can be used to manufacture protein products for molecular and biochemical analysis as well as applications in the pharmaceutical industry.


Assuntos
Células Vegetais , Plantas , Sistema Livre de Células/metabolismo , Células Vegetais/metabolismo , Plantas/genética , Plantas/metabolismo , Biossíntese de Proteínas , Proteínas Recombinantes/metabolismo , Nicotiana/metabolismo
5.
J Plant Physiol ; 258-259: 153359, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33460995

RESUMO

Recombinant proteins play an important role in many areas of our lives. For example, recombinant enzymes are used in the food and chemical industries and as high-quality proteins for research, diagnostic and therapeutic applications. The production of recombinant proteins is still dominated by expression systems based on microbes and mammalian cells, although the manufacturing of recombinant proteins in plants - known as molecular farming - has been promoted as an alternative, cost-efficient strategy for three decades. Several molecular farming products have reached the market, but the number of success stories has been limited by industrial inertia driven by perceptions of low productivity, the high cost of downstream processing, and regulatory hurdles that create barriers to translation. Here, we discuss the technical and economic factors required for the successful commercialization of molecular farming, and consider potential future directions to enable the broader application of production platforms based on plants.


Assuntos
Agricultura Molecular , Proteínas de Plantas/análise , Plantas Geneticamente Modificadas/química , Proteínas Recombinantes/análise , Biotecnologia
6.
Immunotherapy ; 13(2): 125-141, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33172323

RESUMO

Aim: We report results of a first-in-human study of pasotuxizumab, a PSMA bispecific T-cell engager (BiTE®) immune therapy mediating T-cell killing of tumor cells in patients with advanced castration-resistant prostate cancer. Patients & methods: We assessed once-daily subcutaneous (SC) pasotuxizumab. All SC patients developed antidrug antibodies; therefore, continuous intravenous (cIV) infusion was assessed. Results: A total of 47 patients received pasotuxizumab (SC: n = 31, 0.5-172 µg/d; cIV: n = 16, 5-80 µg/d). The SC maximum tolerated dose was 172.0 µg/d. A sponsor change stopped the cIV cohort early; maximum tolerated dose was not determined. PSA responders occurred (>50% PSA decline: SC, n = 9; cIV, n = 3), including two long-term responders. Conclusion: Data support pasotuxizumab safety in advanced castration-resistant prostate cancer and represent evidence of BiTE monotherapy efficacy in solid tumors. Clinical trial registration: NCT01723475 (ClinicalTrials.gov).


Assuntos
Anticorpos Biespecíficos , Antineoplásicos Imunológicos , Neoplasias de Próstata Resistentes à Castração , Idoso , Idoso de 80 Anos ou mais , Humanos , Masculino , Pessoa de Meia-Idade , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/farmacocinética , Anticorpos Biespecíficos/uso terapêutico , Antígenos de Superfície/imunologia , Antineoplásicos Imunológicos/imunologia , Antineoplásicos Imunológicos/farmacocinética , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais/sangue , Complexo CD3/imunologia , Glutamato Carboxipeptidase II/imunologia , Imunoterapia , Infusões Intravenosas , Injeções Subcutâneas , Dose Máxima Tolerável , Neoplasias de Próstata Resistentes à Castração/sangue , Neoplasias de Próstata Resistentes à Castração/imunologia , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/terapia , Resultado do Tratamento
7.
Mol Cancer Ther ; 11(12): 2664-73, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23041545

RESUMO

For treatment of patients with prostate cancer (PCa), we developed a novel T cell-engaging (BiTE) antibody designated AMG 212 or BAY2010112 that is bispecific for prostate-specific membrane antigen (PSMA) and the CD3 epsilon subunit of the T cell receptor complex. AMG 212/BAY2010112 induced target cell-dependent activation and cytokine release of T cells, and efficiently redirected T cells for lysis of target cells. In addition to Chinese hamster ovary cells stably expressing human or cynomolgus monkey PSMA, T cells redirected by AMG 212/BAY2010112 also lysed human PCa cell lines VCaP, 22Rv1, MDA PCa 2b, C4-2, PC-3-huPSMA, and LnCaP at half maximal BiTE concentrations between 0.1 and 4 ng/mL (1.8-72 pmol/L). No lysis of PSMA-negative human PCa cell lines PC-3 and DU145 was observed. The subcutaneous (s.c.) formation of tumors from PC-3-huPSMA cells in NOD/SCID mice was significantly prevented by once daily intravenous (i.v.) injection of AMG 212/BAY2010112 at a dose level as low as 0.005 mg/kg/d. Rapid tumor shrinkage with complete remissions were observed in NOD/SCID mice bearing established s.c. 22Rv1 xenografts after repeated daily treatment with AMG 212/BAY2010112 by either the i.v. or s.c. route. Of note, 22Rv1 tumors were grown in the absence of human T cells followed by intraperitoneal injection of T cells 3 days before BiTE treatment. No effects on tumor growth were observed in the absence of human T cells or AMG 212/BAY2010112. On the basis of these preclinical results, AMG 212/BAY2010112 appears as a promising new BiTE antibody for the treatment of patients with PSMA-expressing PCa.


Assuntos
Anticorpos Biespecíficos/farmacologia , Antígenos de Superfície/imunologia , Complexo CD3/imunologia , Glutamato Carboxipeptidase II/imunologia , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/terapia , Animais , Anticorpos Biespecíficos/genética , Anticorpos Biespecíficos/imunologia , Complexo CD3/genética , Células CHO , Cricetinae , Reações Cruzadas , Feminino , Haplorrinos , Humanos , Imunização Passiva/métodos , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias da Próstata/patologia , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Immunol ; 178(7): 4650-7, 2007 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17372024

RESUMO

Recombinant TCRs confer specificity to T cells and trigger their activation. Receptors with Ab-derived binding domains have the advantages of MHC-independent Ag recognition and of targeting a variety of chemically different molecules. We explored the impact of the position of a defined epitope within the target molecule on the efficacy of receptor-mediated T cell activation. T cells were grafted with recombinant immunoreceptors that recognize either the membrane distal N or the proximal A3 domain of carcinoembryonic Ag (CEA). Upon binding to isolated, solid-phase immobilized CEA, receptor-mediated T cell activation correlates with the binding efficiency, irrespectively, of the epitope position. Upon binding to CEA expressed on the cell membrane, in contrast, the A3 epitope mediates more efficiently T cell activation than the N epitope, although the N epitope is bound with higher affinity. The CEA N epitope when expressed in a more membrane proximal position, however, activated receptor grafted T cells with higher efficiency than in the distal position. The position of the targeted epitope within the molecule obviously has major impact on the efficacy of T cell activation independently of the binding efficiency of the immunoreceptor.


Assuntos
Antígeno Carcinoembrionário/imunologia , Epitopos/imunologia , Ativação Linfocitária , Receptores Imunológicos/imunologia , Linfócitos T/imunologia , Anticorpos/química , Anticorpos/imunologia , Anticorpos/farmacologia , Antígeno Carcinoembrionário/química , Epitopos/química , Humanos , Estrutura Terciária de Proteína , Receptores Imunológicos/química , Receptores Imunológicos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Linfócitos T/efeitos dos fármacos
9.
Biochem Biophys Res Commun ; 338(4): 1811-7, 2005 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-16289041

RESUMO

The ectodomain of human FcgammaRI (rsCD64) was expressed in HEK 293T cells and purified by immobilized-metal affinity chromatography. Binding activity to human IgG was verified by ELISA and the isotype-specificity determined by a surface plasmon resonance inhibition assay was found to be the same as for native CD64. The active concentration of the rsCD64 preparation was derived using a solution competition assay and was used for the subsequent kinetic analysis. Binding curves were well described by a simple monovalent interaction model confirming the known stoichiometry of the interaction. Mass-transport limitation was prevented by using sufficiently low surface capacities. For binding to the recombinant mouse/human chimeric antibody cPIPP (IgG1/kappa) a high association rate of k(ass)=1.7 x 10(6) (M s)(-1) and a low dissociation rate of k(diss)=1.8 x 10(-4) s(-1) were observed. The derived dissociation equilibrium constant of K(D)=110 pM was significantly lower than that reported for binding to native FcgammaRI.


Assuntos
Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Receptores de IgG/imunologia , Receptores de IgG/metabolismo , Animais , Reações Antígeno-Anticorpo , Linhagem Celular , Quimera/imunologia , Cromatografia de Afinidade , Ensaio de Imunoadsorção Enzimática , Humanos , Cinética , Camundongos , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Ressonância de Plasmônio de Superfície
10.
BMC Biotechnol ; 5: 4, 2005 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-15667665

RESUMO

BACKGROUND: Common oral diseases and dental caries can be prevented effectively by passive immunization. In humans, passive immunotherapy may require the use of humanized or human antibodies to prevent adverse immune responses against murine epitopes. Therefore we generated human single chain and diabody antibody derivatives based on the binding characteristics of the murine monoclonal antibody Guy's 13. The murine form of this antibody has been used successfully to prevent Streptococcus mutans colonization and the development of dental caries in non-human primates, and to prevent bacterial colonization in human clinical trials. RESULTS: The antibody derivatives were generated using a chain-shuffling approach based on human antibody variable gene phage-display libraries. Like the parent antibody, these derivatives bound specifically to SAI/II, the surface adhesin of the oral pathogen S. mutans. CONCLUSIONS: Humanization of murine antibodies can be easily achieved using phage display libraries. The human antibody fragments bind the antigen as well as the causative agent of dental caries. In addition the human diabody derivative is capable of aggregating S. mutans in vitro, making it a useful candidate passive immunotherapeutic agent for oral diseases.


Assuntos
Biotecnologia/métodos , Cárie Dentária/prevenção & controle , Biblioteca de Peptídeos , Streptococcus mutans/genética , Aglutinação , Sequência de Aminoácidos , Animais , Anticorpos Antibacterianos , Anticorpos Monoclonais/química , Especificidade de Anticorpos , Antígenos de Bactérias , Cárie Dentária/metabolismo , Ensaio de Imunoadsorção Enzimática , Epitopos , Humanos , Fragmentos de Imunoglobulinas/química , Região Variável de Imunoglobulina/química , Imunoterapia/métodos , Camundongos , Dados de Sequência Molecular
11.
Int J Mol Med ; 15(2): 305-13, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15647848

RESUMO

Pancreatic carcinoma is the fifth leading cause of cancer-related deaths in North America and Europe. Major reasons for the high mortality rate include the inability to detect pancreatic cancer at an early stage, extensive local invasion, and early formation of lymphatic and hematogenous metastases. Consequently, novel and effective therapies need to be developed urgently in order to improve the outcome of patients. Since overexpression of the epidermal growth factor receptor (EGFR) in pancreatic tumors correlates with advanced clinical staging, increased tumor size and reduced patient survival, this receptor represents an appropriate target for immunotherapy. We recently generated the recombinant immunotoxin 425(scFv)-ETA' by genetically fusing the anti-EGFR single chain variable fragment 425(scFv) to a truncated version of Pseudomonas aeroginosa exotoxin A (ETA'). The 425(scFv)-ETA' fusion protein was functionally expressed in the periplasmic space of Escherichia coli and was purified using a combination of metal-ion affinity and anion exchange chromatography. The protein showed specific binding to and toxicity against the EGFR-positive, metastatic pancreatic carcinoma cell line L3.6pl, but not to control cell systems. We report the anti-tumor activity of this recombinant immunotoxin in a disseminated human pancreatic cancer nude mouse model. After intravenous (i.v.) injection of L3.6pl cells into immunodeficient nude mice, both single (20 microg on day 1 after challenge) and repeated (10 microg on days 1, 2, 3 and 4 after tumor cell injection) i.v. administration of 425(scFv)-ETA' resulted in a significant reduction in the average number of lung metastases from 56.25 per animal in the control groups to 0.875 per animal (single injection) and 0.286 per animal (repeated injection), respectively, in the experimental groups. In summary, this is the first report showing an in vivo anti-tumor effect caused by the recombinant immunotoxin 425(scFv)-ETA' against disseminated growing metastatic human pancreatic carcinoma cells. Our data suggest that EGFR-specific antibody toxins could be suitable for further clinical investigation in the development of therapies for pancreatic carcinoma.


Assuntos
Antineoplásicos/farmacologia , Receptores ErbB/química , Região Variável de Imunoglobulina/química , Neoplasias Pancreáticas/metabolismo , Proteínas Recombinantes/química , ADP Ribose Transferases/química , Animais , Toxinas Bacterianas/química , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células , Cromatografia por Troca Iônica , DNA Complementar/metabolismo , Eletroforese em Gel de Poliacrilamida , Receptores ErbB/metabolismo , Exotoxinas/química , Humanos , Região Variável de Imunoglobulina/metabolismo , Imunotoxinas/química , Imunotoxinas/metabolismo , Íons , Masculino , Dose Máxima Tolerável , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Estatísticos , Metástase Neoplásica , Transplante de Neoplasias , Plasmídeos/metabolismo , Ligação Proteica , Anticorpos de Cadeia Única , Fatores de Virulência/química , Exotoxina A de Pseudomonas aeruginosa
12.
Int J Mol Med ; 14(4): 765-8, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15375615

RESUMO

Due to problems of immobilizing functional tumor antigens in their natural conformation on surfaces for immunoassays, it is often difficult to evaluate the binding of antibodies derived from phage display libraries depleted and selected by panning on cell lines and living tumor cells. Performing cell membrane based ELISA methods does not reveal any up front kinetic binding information and depends on the performance of secondary antibodies and substrates. To overcome these limitations, we developed a new method to visualize direct antibody-cell membrane interactions by surface plasmon resonance using the Biacore 3000 and on-line signal subtraction on antigen-negative cell membrane vesicles. Conditions for the coating of cell membrane preparations to a carboxymethyl dextran hydrogel surface of a commercially available chip and the proof of concept for this application by the analysis of different formats of anti-CD30 and anti-carcinoembryonic antigen (CEA) antibodies interacting with coated membrane vesicles of CD30-positive/CEA-negative and CD30-negative and CEA-positive cell lines are described.


Assuntos
Anticorpos/imunologia , Anticorpos/metabolismo , Membrana Celular/imunologia , Membrana Celular/metabolismo , Ressonância de Plasmônio de Superfície/métodos , Linhagem Celular Tumoral , Humanos , Antígeno Ki-1/imunologia , Antígeno Ki-1/metabolismo
13.
Plant Biotechnol J ; 2(4): 279-87, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17134389

RESUMO

Plant-based expression systems are attractive for the large-scale production of pharmaceutical proteins. However, glycoproteins require particular attention as inherent differences in the N-glycosylation pathways of plants and mammals result in the production of glycoproteins bearing core-xylose and core-alpha(1,3)-fucose glyco-epitopes. For treatments requiring large quantities of repeatedly administered glycoproteins, the immunological properties of these non-mammalian glycans are a concern. Recombinant glycoproteins could be retained within the endoplasmic reticulum (ER) to prevent such glycan modifications occurring in the late Golgi compartment. Therefore, we analysed cPIPP, a mouse/human chimeric IgG1 antibody binding to the beta-subunit of human chorionic gonadotropin (hCG), fused to a C-terminal KDEL sequence, to investigate the efficiency of ER retrieval and the consequences in terms of N-glycosylation. The KDEL-tagged cPIPP antibody was expressed in transgenic tobacco plants or Agrobacterium-infiltrated tobacco and winter cherry leaves. N-Glycan analysis showed that the resulting plantibodies contained only high-mannose (Man)-type Man-6 to Man-9 oligosaccharides. In contrast, the cPIPP antibody lacking the KDEL sequence was found to carry complex N-glycans containing core-xylose and core-alpha(1,3)-fucose, thereby demonstrating the secretion competence of the antibody. Furthermore, fusion of KDEL to the diabody derivative of PIPP, which contains an N-glycosylation site within the heavy chain variable domain, also resulted in a molecule lacking complex glycans. The complete absence of xylose and fucose residues clearly shows that the KDEL-mediated ER retrieval of cPIPP or its diabody derivative is efficient in preventing the formation of non-mammalian complex oligosaccharides.

14.
Cancer Res ; 63(23): 8414-9, 2003 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-14679004

RESUMO

CD64, the high affinity receptor for IgG (FcgammaRI) is expressed on acute myeloid leukemia blast cells and has recently been described as a specific target for immunotherapy. To generate a recombinant immunotoxin, the anti-CD64 single chain fragment (scFv) m22 was cloned into the bacterial expression vector pBM1.1 and fused to a deletion mutant of Pseudomonas exotoxin A (ETA'). Genetically modified Escherichia coli BL21 Star (DE3) were grown under osmotic stress conditions in the presence of compatible solutes. After isopropyl beta-D-thiogalactoside induction, the 70-kDa His(10)-tagged m22(scFv)-ETA' was directed into the periplasmic space and purified by a combination of metal-ion affinity and molecular size-chromatography. The characteristics of the recombinant protein were assessed by ELISA, flow cytometry, and toxicity assays, using CD64-positive AML cells. Binding specificity of m22(scFv)-ETA' was verified by competition with the parental anti-CD64 monoclonal antibody m22. The recombinant immunotoxin showed significant toxicity toward the CD64-positive cell lines HL-60 and U937 reaching 50% inhibition of cell proliferation at a concentration (IC(50)) of 11.6 ng/ml against HL-60 cells and 12.9 ng/ml against U937 cells. Approximately 41% of primary leukemia cells from a patient with CD64-positive AML were driven into early apoptosis by m22(scFv)-ETA' as measured by flow cytometric analysis. This is the first article documenting the specific cytotoxicity of a novel recombinant immunotoxin with major implications for immunotherapy of CD64-positive diseases.


Assuntos
ADP Ribose Transferases/farmacologia , Toxinas Bacterianas/farmacologia , Exotoxinas/farmacologia , Imunotoxinas/farmacologia , Leucemia Mieloide/tratamento farmacológico , Receptores de IgG/imunologia , Fatores de Virulência/farmacologia , ADP Ribose Transferases/genética , ADP Ribose Transferases/imunologia , Adulto , Especificidade de Anticorpos , Apoptose/efeitos dos fármacos , Toxinas Bacterianas/genética , Toxinas Bacterianas/imunologia , Exotoxinas/genética , Exotoxinas/imunologia , Humanos , Fragmentos de Imunoglobulinas/genética , Fragmentos de Imunoglobulinas/imunologia , Fragmentos de Imunoglobulinas/farmacologia , Imunotoxinas/genética , Imunotoxinas/imunologia , Leucemia Mieloide/imunologia , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/farmacologia , Fatores de Virulência/genética , Fatores de Virulência/imunologia , Exotoxina A de Pseudomonas aeruginosa
15.
Int J Oncol ; 23(4): 1179-86, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12964002

RESUMO

Pancreatic carcinoma still has the highest mortality rate in comparison to any other malignancy. Major reasons are late detection of disease, highly aggressive tumor growth and the early formation of metastases. Thus, novel effective therapies are urgently needed to improve the outcome of the patients. Overexpression of the epidermal growth factor receptor (EGFR) and its ligands has been implicated in the oncogenesis of pancreatic carcinoma and associated with an unfavorable prognosis. Consequently, the EGFR represents a specific target antigen suitable for immunotherapy. We generated a recombinant immunotoxin by fusing the anti-EGFR single chain fragment 425(scFv) to a truncated mutant of Pseudomonas Exotoxin A (ETA'). Using the expression vector pBM1.1, functional 425(scFv)-ETA' was periplasmically expressed under osmotic stress conditions in the presence of compatible solutes. The 72 kDa His10-tagged fusion protein was purified by a combination of metal-ion affinity and molecular size chromatography. Binding activity and specificity of the immunotoxin to the EGFR-positive pancreatic carcinoma cell line L3.6pl was confirmed by flow cytometry and ELISA. Finally, 425(scFv)-ETA' showed significant toxicity toward this cell line reaching 50% inhibition of cell proliferation at a concentration (IC50) of 7.5 ng/ml. This is the first report documenting the specific cytotoxicity of a recombinant immunotoxin towards metastatic pancreatic carcinoma cells, suggesting that EGFR-specific antibody toxins may become valuable therapeutic reagents for the treatment of pancreatic carcinoma.


Assuntos
Carcinoma/tratamento farmacológico , Fator de Crescimento Epidérmico/química , Região Variável de Imunoglobulina/química , Neoplasias Pancreáticas/terapia , Proteínas Recombinantes/química , Divisão Celular , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Escherichia coli/metabolismo , Citometria de Fluxo , Humanos , Imunoterapia , Imunotoxinas/química , Concentração Inibidora 50 , Ligantes , Modelos Genéticos , Mutação , Metástase Neoplásica , Plasmídeos/metabolismo , Prognóstico , Proteínas Recombinantes de Fusão/química , Anticorpos de Cadeia Única
16.
FASEB J ; 16(3): 408-10, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11790722

RESUMO

The feasibility of using tobacco for production of a recombinant antibody (T84.66/GS8 diabody) directed against the carcinoembryonic antigen (CEA) and used for tumor imaging was investigated. Two constructs were generated for targeting the protein either to the apoplast or to the endoplasmic reticulum. Expression of the diabody in tobacco leaves after vacuum-assisted infiltration of engineered Agrobacteria (agro-infiltration) and in regenerated transgenic tobacco plants was analyzed and compared. Results in terms of protein expression and accumulation between both systems showed a good correlation. His6-tagged T84.66 diabody was readily purified from agro-infiltrated tobacco leaves and from transgenic plants by immobilized metal ion affinity chromatography. The purified protein was analyzed by polyacrylamide gel electrophoresis, Western blot, gel filtration, electrospray mass spectrometry, direct and competition ELISA, electrophoretic mobility shift assay, and staining of CEA-positive colon adenocarcinoma cell line LS174T. Our results demonstrate that tobacco is a competent production system for this clinically relevant diabody.


Assuntos
Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Antígeno Carcinoembrionário/imunologia , Neoplasias do Colo/imunologia , Nicotiana/genética , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/metabolismo , Especificidade de Anticorpos , Cromatografia de Afinidade , Estudos de Viabilidade , Humanos , Microscopia de Fluorescência , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Rhizobium/genética , Nicotiana/anatomia & histologia , Nicotiana/microbiologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...