RESUMO
The bifunctional enzyme phosphoribosyl-ATP pyrophosphohydrolase/phosphoribosyl-AMP cyclohydrolase (HisIE) catalyzes the second and third steps of histidine biosynthesis: pyrophosphohydrolysis of N1-(5-phospho-ß-D-ribosyl)-ATP (PRATP) to N1-(5-phospho-ß-D-ribosyl)-AMP (PRAMP) and pyrophosphate in the C-terminal HisE-like domain, and cyclohydrolysis of PRAMP to N-(5'-phospho-D-ribosylformimino)-5-amino-1-(5â³-phospho-D-ribosyl)-4-imidazolecarboxamide (ProFAR) in the N-terminal HisI-like domain. Here we use UV-VIS spectroscopy and LC-MS to show Acinetobacter baumannii putative HisIE produces ProFAR from PRATP. Employing an assay to detect pyrophosphate and another to detect ProFAR, we established the pyrophosphohydrolase reaction rate is higher than the overall reaction rate. We produced a truncated version of the enzyme-containing only the C-terminal (HisE) domain. This truncated HisIE was catalytically active, which allowed the synthesis of PRAMP, the substrate for the cyclohydrolysis reaction. PRAMP was kinetically competent for HisIE-catalyzed ProFAR production, demonstrating PRAMP can bind the HisI-like domain from bulk water, and suggesting that the cyclohydrolase reaction is rate-limiting for the overall bifunctional enzyme. The overall kcat increased with increasing pH, while the solvent deuterium kinetic isotope effect decreased at more basic pH but was still large at pH 7.5. The lack of solvent viscosity effects on kcat and kcat/KM ruled out diffusional steps limiting the rates of substrate binding and product release. Rapid kinetics with excess PRATP demonstrated a lag time followed by a burst in ProFAR formation. These observations are consistent with a rate-limiting unimolecular step involving a proton transfer following adenine ring opening. We synthesized N1-(5-phospho-ß-D-ribosyl)-ADP (PRADP), which could not be processed by HisIE. PRADP inhibited HisIE-catalyzed ProFAR formation from PRATP but not from PRAMP, suggesting that it binds to the phosphohydrolase active site while still permitting unobstructed access of PRAMP to the cyclohydrolase active site. The kinetics data are incompatible with a build-up of PRAMP in bulk solvent, indicating HisIE catalysis involves preferential channeling of PRAMP, albeit not via a protein tunnel.
RESUMO
INTRODUCTION: Nemaline myopathies (NM) represent a group of clinically and genetically heterogeneous congenital muscle disorders with the common denominator of nemaline rods on muscle biopsy. NEB and ACTA1 are the most common causative genes. Currently, available treatments are supportive. AREAS COVERED: We explored experimental treatments for NM, identifying at least eleven mainly pre-clinical approaches utilizing murine and/or human muscle cells. These approaches target either i) the causative gene or associated genes implicated in the same pathway; ii) pathophysiologically relevant biochemical mechanisms such as calcium/myosin regulation of muscle contraction; iii) myogenesis; iv) other therapies that improve or optimize muscle function more generally; v) and/or combinations of the above. The scope and efficiency of these attempts is diverse, ranging from gene-specific effects to those widely applicable to all NM-associated genes. EXPERT OPINION: The wide range of experimental therapies currently under consideration for NM is promising. Potential translation into clinical use requires consideration of additional factors such as the potential muscle type specificity as well as the possibility of gene expression remodeling. Challenges in clinical translation include the rarity and heterogeneity of genotypes, phenotypes, and disease trajectories, as well as the lack of longitudinal natural history data and validated outcomes and biomarkers.
Assuntos
Miopatias da Nemalina , Humanos , Camundongos , Animais , Miopatias da Nemalina/genética , Miopatias da Nemalina/terapia , Miopatias da Nemalina/patologia , Fenótipo , Genótipo , Músculo Esquelético , MutaçãoRESUMO
ATP phosphoribosyltransferase catalyses the first step of histidine biosynthesis and is controlled via a complex allosteric mechanism where the regulatory protein HisZ enhances catalysis by the catalytic protein HisGS while mediating allosteric inhibition by histidine. Activation by HisZ was proposed to position HisGS Arg56 to stabilise departure of the pyrophosphate leaving group. Here we report active-site mutants of HisGS with impaired reaction chemistry which can be allosterically restored by HisZ despite the HisZ:HisGS interface lying ~20 Å away from the active site. MD simulations indicate HisZ binding constrains the dynamics of HisGS to favour a preorganised active site where both Arg56 and Arg32 are poised to stabilise leaving-group departure in WT-HisGS. In the Arg56Ala-HisGS mutant, HisZ modulates Arg32 dynamics so that it can partially compensate for the absence of Arg56. These results illustrate how remote protein-protein interactions translate into catalytic resilience by restoring damaged electrostatic preorganisation at the active site.
Assuntos
ATP Fosforribosiltransferase , ATP Fosforribosiltransferase/química , Domínio Catalítico , Histidina/metabolismo , Regulação AlostéricaRESUMO
The enzyme m1A22-tRNA methyltransferase (TrmK) catalyzes the transfer of a methyl group to the N1 of adenine 22 in bacterial tRNAs. TrmK is essential for Staphylococcus aureus survival during infection but has no homolog in mammals, making it a promising target for antibiotic development. Here, we characterize the structure and function of S. aureus TrmK (SaTrmK) using X-ray crystallography, binding assays, and molecular dynamics simulations. We report crystal structures for the SaTrmK apoenzyme as well as in complexes with methyl donor SAM and co-product product SAH. Isothermal titration calorimetry showed that SAM binds to the enzyme with favorable but modest enthalpic and entropic contributions, whereas SAH binding leads to an entropic penalty compensated for by a large favorable enthalpic contribution. Molecular dynamics simulations point to specific motions of the C-terminal domain being altered by SAM binding, which might have implications for tRNA recruitment. In addition, activity assays for SaTrmK-catalyzed methylation of A22 mutants of tRNALeu demonstrate that the adenine at position 22 is absolutely essential. In silico screening of compounds suggested the multifunctional organic toxin plumbagin as a potential inhibitor of TrmK, which was confirmed by activity measurements. Furthermore, LC-MS data indicated the protein was covalently modified by one equivalent of the inhibitor, and proteolytic digestion coupled with LC-MS identified Cys92 in the vicinity of the SAM-binding site as the sole residue modified. These results identify a cryptic binding pocket of SaTrmK, laying a foundation for future structure-based drug discovery.
Assuntos
Proteínas de Bactérias , Staphylococcus aureus , tRNA Metiltransferases , Adenina , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Conformação Proteica , RNA de Transferência/metabolismo , S-Adenosilmetionina/metabolismo , Staphylococcus aureus/enzimologia , tRNA Metiltransferases/química , tRNA Metiltransferases/metabolismoRESUMO
INTRODUCTION: Spinal muscular atrophy (SMA) is a rare autosomal recessive neuromuscular disease which is characterised by muscle atrophy and early death in most patients. Risdiplam is the third overall and first oral drug approved for SMA with disease-modifying potential. Risdiplam acts as a survival motor neuron 2 (SMN2) pre-mRNA splicing modifier with satisfactory safety and efficacy profile. This review aims to critically appraise the place of risdiplam in the map of SMA therapeutics. AREAS COVERED: This review gives an overview of the current market for SMA and presents the mechanism of action and the pharmacological properties of risdiplam. It also outlines the development of risdiplam from early preclinical stages through to the most recently published results from phase 2/3 clinical trials. Risdiplam has proved its efficacy in pivotal trials for SMA Types 1, 2, and 3 with a satisfactory safety profile. EXPERT OPINION: In the absence of comparative data with the other two approved drugs, the role of risdiplam in the treatment algorithm of affected individuals is examined in three different patient populations based on the age and diagnosis method (newborn screening or clinical, symptom-driven diagnosis). Long-term data and real-world data will play a fundamental role in its future.
Assuntos
Atrofia Muscular Espinal , Compostos Azo/efeitos adversos , Humanos , Recém-Nascido , Neurônios Motores , Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/genética , Pirimidinas , Splicing de RNA , Doenças Raras/tratamento farmacológico , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genéticaRESUMO
ATP phosphoribosyltransferase (ATPPRT) catalyzes the first step of histidine biosynthesis in bacteria, namely, the condensation of ATP and 5-phospho-α-d-ribosyl-1-pyrophosphate (PRPP) to generate N1-(5-phospho-ß-d-ribosyl)-ATP (PRATP) and pyrophosphate. Catalytic (HisGS) and regulatory (HisZ) subunits assemble in a hetero-octamer where HisZ activates HisGS and mediates allosteric inhibition by histidine. In Acinetobacter baumannnii, HisGS is necessary for the bacterium to persist in the lung during pneumonia. Inhibition of ATPPRT is thus a promising strategy for specific antibiotic development. Here, A. baumannii ATPPRT is shown to follow a rapid equilibrium random kinetic mechanism, unlike any other ATPPRT. Histidine noncompetitively inhibits ATPPRT. Binding kinetics indicates histidine binds to free ATPPRT and to ATPPRT:PRPP and ATPPRT:ATP binary complexes with similar affinity following a two-step binding mechanism, but with distinct kinetic partition of the initial enzyme:inhibitor complex. The dipeptide histidine-proline inhibits ATPPRT competitively and likely uncompetitively, respectively, against PRPP and ATP. Rapid kinetics analysis shows His-Pro binds to the ATPPRT:ATP complex via a two-step binding mechanism. A related HisZ that shares 43% sequence identity with A. baumannii HisZ is a tight-binding allosteric inhibitor of A. baumannii HisGS. These findings lay the foundation for inhibitor design against A. baumannii ATPPRT.
Assuntos
ATP Fosforribosiltransferase , Acinetobacter baumannii , ATP Fosforribosiltransferase/genética , ATP Fosforribosiltransferase/metabolismo , Acinetobacter baumannii/metabolismo , Dipeptídeos , Histidina , CinéticaRESUMO
Structural Maintenance of Chromosomes (SMC) complexes act ubiquitously to compact DNA linearly, thereby facilitating chromosome organization-segregation. SMC proteins have a conserved architecture, with a dimerization hinge and an ATPase head domain separated by a long antiparallel intramolecular coiled-coil. Dimeric SMC proteins interact with essential accessory proteins, kleisins that bridge the two subunits of an SMC dimer, and HAWK/KITE proteins that interact with kleisins. The ATPase activity of the Escherichia coli SMC protein, MukB, which is essential for its in vivo function, requires its interaction with the dimeric kleisin, MukF that in turn interacts with the KITE protein, MukE. Here we demonstrate that, in addition, MukB interacts specifically with Acyl Carrier Protein (AcpP) that has essential functions in fatty acid synthesis. We characterize the AcpP interaction at the joint of the MukB coiled-coil and show that the interaction is necessary for MukB ATPase and for MukBEF function in vivo.
Assuntos
Proteína de Transporte de Acila/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Cromossomos Bacterianos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Repressoras/metabolismo , Proteína de Transporte de Acila/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas Cromossômicas não Histona/genética , Cromossomos Bacterianos/genética , Ativação Enzimática , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Mutação , Ligação Proteica , Proteínas Repressoras/genéticaRESUMO
Structural Maintenance of Chromosomes (SMC) complexes have ubiquitous roles in compacting DNA linearly, thereby promoting chromosome organization-segregation. Interaction between the Escherichia coli SMC complex, MukBEF, and matS-bound MatP in the chromosome replication termination region, ter, results in depletion of MukBEF from ter, a process essential for efficient daughter chromosome individualization and for preferential association of MukBEF with the replication origin region. Chromosome-associated MukBEF complexes also interact with topoisomerase IV (ParC2E2), so that their chromosome distribution mirrors that of MukBEF. We demonstrate that MatP and ParC have an overlapping binding interface on the MukB hinge, leading to their mutually exclusive binding, which occurs with the same dimer to dimer stoichiometry. Furthermore, we show that matS DNA competes with the MukB hinge for MatP binding. Cells expressing MukBEF complexes that are mutated at the ParC/MatP binding interface are impaired in ParC binding and have a mild defect in MukBEF function. These data highlight competitive binding as a means of globally regulating MukBEF-topoisomerase IV activity in space and time.
Assuntos
Ligação Competitiva , Proteínas Cromossômicas não Histona/química , DNA Topoisomerase IV/química , Proteínas de Escherichia coli/química , Escherichia coli/químicaRESUMO
Faithful segregation of bacterial chromosomes relies on the ParABS partitioning system and the SMC complex. In this work, we used single-molecule techniques to investigate the role of cytidine triphosphate (CTP) binding and hydrolysis in the critical interaction between centromere-like parS DNA sequences and the ParB CTPase. Using a combined optical tweezers confocal microscope, we observe the specific interaction of ParB with parS directly. Binding around parS is enhanced by the presence of CTP or the non-hydrolysable analogue CTPγS. However, ParB proteins are also detected at a lower density in distal non-specific DNA. This requires the presence of a parS loading site and is prevented by protein roadblocks, consistent with one-dimensional diffusion by a sliding clamp. ParB diffusion on non-specific DNA is corroborated by direct visualization and quantification of movement of individual quantum dot labelled ParB. Magnetic tweezers experiments show that the spreading activity, which has an absolute requirement for CTP binding but not hydrolysis, results in the condensation of parS-containing DNA molecules at low nanomolar protein concentrations.
Assuntos
Proteínas de Bactérias/metabolismo , Citidina Trifosfato/metabolismo , DNA Bacteriano/metabolismo , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Centrômero/metabolismo , Segregação de Cromossomos , Cromossomos Bacterianos , Hidrólise , Ligação Proteica , Pirofosfatases/metabolismoRESUMO
Biallelic mutations in SNORD118, encoding the small nucleolar RNA U8, cause leukoencephalopathy with calcifications and cysts (LCC). Given the difficulty in interpreting the functional consequences of variants in nonprotein encoding genes, and the high allelic polymorphism across SNORD118 in controls, we set out to provide a description of the molecular pathology and clinical spectrum observed in a cohort of patients with LCC. We identified 64 affected individuals from 56 families. Age at presentation varied from 3 weeks to 67 years, with disease onset after age 40 years in eight patients. Ten patients had died. We recorded 44 distinct, likely pathogenic, variants in SNORD118. Fifty two of 56 probands were compound heterozygotes, with parental consanguinity reported in only three families. Forty nine of 56 probands were either heterozygous (46) or homozygous (three) for a mutation involving one of seven nucleotides that facilitate a novel intramolecular interaction between the 5' end and 3' extension of precursor-U8. There was no obvious genotype-phenotype correlation to explain the marked variability in age at onset. Complementing recently published functional analyses in a zebrafish model, these data suggest that LCC most often occurs due to combinatorial severe and milder mutations, with the latter mostly affecting 3' end processing of precursor-U8.
Assuntos
Calcinose/genética , Estudos de Associação Genética , Leucoencefalopatias/genética , RNA Nucleolar Pequeno/genética , Adolescente , Adulto , Idoso , Animais , Calcinose/complicações , Calcinose/patologia , Criança , Pré-Escolar , Consanguinidade , Modelos Animais de Doenças , Feminino , Heterozigoto , Humanos , Lactente , Recém-Nascido , Leucoencefalopatias/complicações , Leucoencefalopatias/patologia , Masculino , Pessoa de Meia-Idade , Patologia Molecular , Adulto Jovem , Peixe-Zebra/genéticaRESUMO
Ubiquitous Structural Maintenance of Chromosomes (SMC) complexes use a proteinaceous ring-shaped architecture to organize and individualize chromosomes, thereby facilitating chromosome segregation. They utilize cycles of adenosine triphosphate (ATP) binding and hydrolysis to transport themselves rapidly with respect to DNA, a process requiring protein conformational changes and multiple DNA contact sites. By analysing changes in the architecture and stoichiometry of the Escherichia coli SMC complex, MukBEF, as a function of nucleotide binding to MukB and subsequent ATP hydrolysis, we demonstrate directly the formation of dimer of MukBEF dimer complexes, dependent on dimeric MukF kleisin. Using truncated and full length MukB, in combination with MukEF, we show that engagement of the MukB ATPase heads on nucleotide binding directs the formation of dimers of heads-engaged dimer complexes. Complex formation requires functional interactions between the C- and N-terminal domains of MukF with the MukB head and neck, respectively, and MukE, which organizes the complexes by stabilizing binding of MukB heads to MukF. In the absence of head engagement, a MukF dimer bound by MukE forms complexes containing only a dimer of MukB. Finally, we demonstrate that cells expressing MukBEF complexes in which MukF is monomeric are Muk-, with the complexes failing to associate with chromosomes.
Assuntos
Proteínas Cromossômicas não Histona/química , Proteínas de Escherichia coli/genética , Proteínas Repressoras/genética , Proteínas Cromossômicas não Histona/genética , Cromossomos/química , Cromossomos/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Ligação Proteica , Proteínas Repressoras/químicaRESUMO
ATP phosphoribosyltransferase (ATPPRT) catalyzes the first step of histidine biosynthesis, being allosterically inhibited by the final product of the pathway. Allosteric inhibition of long-form ATPPRTs by histidine has been extensively studied, but inhibition of short-form ATPPRTs is poorly understood. Short-form ATPPRTs are hetero-octamers formed by four catalytic subunits (HisGS) and four regulatory subunits (HisZ). HisGS alone is catalytically active and insensitive to histidine. HisZ enhances catalysis by HisGS in the absence of histidine but mediates allosteric inhibition in its presence. Here, steady-state and pre-steady-state kinetics establish that histidine is a noncompetitive inhibitor of short-form ATPPRT and that inhibition does not occur by dissociating HisGS from the hetero-octamer. The crystal structure of ATPPRT in complex with histidine and the substrate 5-phospho-α-d-ribosyl-1-pyrophosphate was determined, showing histidine bound solely to HisZ, with four histidine molecules per hetero-octamer. Histidine binding involves the repositioning of two HisZ loops. The histidine-binding loop moves closer to histidine to establish polar contacts. This leads to a hydrogen bond between its Tyr263 and His104 in the Asp101-Leu117 loop. The Asp101-Leu117 loop leads to the HisZ-HisGS interface, and in the absence of histidine, its motion prompts HisGS conformational changes responsible for catalytic activation. Following histidine binding, interaction with the histidine-binding loop may prevent the Asp101-Leu117 loop from efficiently sampling conformations conducive to catalytic activation. Tyr263Phe-PaHisZ-containing PaATPPRT, however, is less susceptible though not insensitive to histidine inhibition, suggesting the Tyr263-His104 interaction may be relevant to yet not solely responsible for transmission of the allosteric signal.
Assuntos
ATP Fosforribosiltransferase/antagonistas & inibidores , ATP Fosforribosiltransferase/química , Histidina/química , Histidina/farmacologia , ATP Fosforribosiltransferase/metabolismo , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Cristalografia/métodos , Histidina/metabolismo , Ligação Proteica/fisiologia , Estrutura Secundária de ProteínaRESUMO
Bacillus subtilis ParB forms multimeric networks involving non-specific DNA binding leading to DNA condensation. Previously, we found that an excess of the free C-terminal domain (CTD) of ParB impeded DNA condensation or promoted decondensation of pre-assembled networks (Fisher et al., 2017). However, interpretation of the molecular basis for this phenomenon was complicated by our inability to uncouple protein binding from DNA condensation. Here, we have combined lateral magnetic tweezers with TIRF microscopy to simultaneously control the restrictive force against condensation and to visualise ParB protein binding by fluorescence. At non-permissive forces for condensation, ParB binds non-specifically and highly dynamically to DNA. Our new approach concluded that the free CTD blocks the formation of ParB networks by heterodimerisation with full length DNA-bound ParB. This strongly supports a model in which the CTD acts as a key bridging interface between distal DNA binding loci within ParB networks.
Assuntos
Bacillus subtilis/enzimologia , DNA Primase/metabolismo , DNA/metabolismo , Microscopia de Fluorescência/métodos , Multimerização Proteica , DNA Primase/genética , Cinética , Magnetismo , Ligação Proteica , Domínios ProteicosRESUMO
Short-form ATP phosphoribosyltransferase (ATPPRT) is a hetero-octameric allosteric enzyme comprising four catalytic subunits (HisGS) and four regulatory subunits (HisZ). ATPPRT catalyzes the Mg2+-dependent condensation of ATP and 5-phospho-α-d-ribosyl-1-pyrophosphate (PRPP) to generate N1-(5-phospho-ß-d-ribosyl)-ATP (PRATP) and pyrophosphate, the first reaction of histidine biosynthesis. While HisGS is catalytically active on its own, its activity is allosterically enhanced by HisZ in the absence of histidine. In the presence of histidine, HisZ mediates allosteric inhibition of ATPPRT. Here, initial velocity patterns, isothermal titration calorimetry, and differential scanning fluorimetry establish a distinct kinetic mechanism for ATPPRT where PRPP is the first substrate to bind. AMP is an inhibitor of HisGS, but steady-state kinetics and 31P NMR spectroscopy demonstrate that ADP is an alternative substrate. Replacement of Mg2+ by Mn2+ enhances catalysis by HisGS but not by the holoenzyme, suggesting different rate-limiting steps for nonactivated and activated enzyme forms. Density functional theory calculations posit an SN2-like transition state stabilized by two equivalents of the metal ion. Natural bond orbital charge analysis points to Mn2+ increasing HisGS reaction rate via more efficient charge stabilization at the transition state. High solvent viscosity increases HisGS's catalytic rate, but decreases the hetero-octamer's, indicating that chemistry and product release are rate-limiting for HisGS and ATPPRT, respectively. This is confirmed by pre-steady-state kinetics, with a burst in product formation observed with the hetero-octamer but not with HisGS. These results are consistent with an activation mechanism whereby HisZ binding leads to a more active conformation of HisGS, accelerating chemistry beyond the product release rate.
Assuntos
ATP Fosforribosiltransferase/metabolismo , Psychrobacter/enzimologia , ATP Fosforribosiltransferase/química , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Regulação Alostérica , Sítios de Ligação , Domínio Catalítico , Cinética , Modelos Moleculares , Infecções por Moraxellaceae/microbiologia , Fosforribosil Pirofosfato/metabolismo , Conformação Proteica , Multimerização Proteica , Psychrobacter/química , Psychrobacter/metabolismo , Especificidade por SubstratoRESUMO
This study examined developmental differences in the acoustics of pharyngeal swallowing. Thirty-one young children (M = 4.5 years) and 29 adults (M = 22.5 years) were recorded swallowing thin liquid and puree boluses. In comparison with adults, children showed longer total swallow sound duration and duration to peak intensity, as well as greater variability in the duration to peak intensity and mean of the averaged spectrum in Hz. Thin and puree boluses differed in measures of duration, intensity and frequency of the averaged sound spectrum, although these effects did not interact with age. The increased variability in swallowing observed in children paralleled that found in acoustic measures of vowel formants, although speech and swallowing acoustic measures were uncorrelated. Using Formant 2 frequency as a proxy measure of vocal tract length, the age differences in swallowing acoustics appear to be independent of physical size, although associations between duration to peak intensity and pharyngeal size warrant further investigation. These findings suggest acoustic measures of swallowing are sensitive to developmental status, possibly reflecting ongoing refinement of the pharyngeal swallow across childhood, and support continued research into the use of digital cervical auscultation as a tool to assess the efficiency and stability of the swallowing neuromuscular control system in children and adults.
Assuntos
Acústica , Desenvolvimento Infantil , Deglutição , Faringe/crescimento & desenvolvimento , Adulto , Fatores Etários , Pré-Escolar , Feminino , Humanos , Masculino , Espectrografia do Som , Acústica da Fala , Medida da Produção da Fala , Fatores de Tempo , Qualidade da Voz , Adulto JovemRESUMO
The ParB protein forms DNA bridging interactions around parS to condense DNA and earmark the bacterial chromosome for segregation. The molecular mechanism underlying the formation of these ParB networks is unclear. We show here that while the central DNA binding domain is essential for anchoring at parS, this interaction is not required for DNA condensation. Structural analysis of the C-terminal domain reveals a dimer with a lysine-rich surface that binds DNA non-specifically and is essential for DNA condensation in vitro. Mutation of either the dimerisation or the DNA binding interface eliminates ParB-GFP foci formation in vivo. Moreover, the free C-terminal domain can rapidly decondense ParB networks independently of its ability to bind DNA. Our work reveals a dual role for the C-terminal domain of ParB as both a DNA binding and bridging interface, and highlights the dynamic nature of ParB networks in Bacillus subtilis.
Assuntos
Bacillus subtilis/genética , Centrômero/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ligação Proteica , Multimerização ProteicaRESUMO
BACKGROUND: Diffuse airway mucus obstruction is an important feature of severe and fatal asthma. MUC5AC and MUC5B are the principal gel-forming mucins found in airway mucus. The mucin composition of airway mucus likely affects its functional properties. METHODS: We quantified the principal airway mucins MUC5AC and MUC5B in the sputum of age-matched children with acute and stable asthma and healthy control subjects by using Western blotting. RESULTS: Sputum samples from 38 children (13 with acute asthma, 15 with stable asthma, 10 control subjects) were obtained. Sputum MUC5AC concentrations were 7.6 µg/mL in control subjects, 22.4 µg/mL in those with stable asthma (P = .17), and 44.7 µg/mL in those with acute asthma (P < .05). MUC5B concentrations showed less variation, with 238.5, 208.4 and 165.9 µg/mL in control subjects, those with stable asthma, and those with acute asthma, respectively. The greater MUC5AC concentration in those with acute asthma resulted in a significantly altered MUC5B:MUC5AC ratio between control subjects and those with acute asthma (P < .05). Significant differences in MUC5B glycoforms were present between the groups, with the low-charge-only glycoform being found uniquely in those with acute asthma. CONCLUSIONS: Increased MUC5AC and the presence of a low-charge-only MUC5B glycoform significantly altered mucin composition in children with acute asthma. These changes may be important contributory factors to the airway mucus obstruction observed during acute asthma.
Assuntos
Asma/metabolismo , Mucina-5AC/metabolismo , Mucina-5B/metabolismo , Mucinas/metabolismo , Muco/metabolismo , Mucosa Respiratória/metabolismo , Escarro/química , Doença Aguda , Adolescente , Asma/diagnóstico , Biomarcadores/metabolismo , Western Blotting , Criança , Pré-Escolar , Feminino , Humanos , MasculinoRESUMO
The PcrA/UvrD helicase functions in multiple pathways that promote bacterial genome stability including the suppression of conflicts between replication and transcription and facilitating the repair of transcribed DNA. The reported ability of PcrA/UvrD to bind and backtrack RNA polymerase (1,2) might be relevant to these functions, but the structural basis for this activity is poorly understood. In this work, we define a minimal RNA polymerase interaction domain in PcrA, and report its crystal structure at 1.5 Å resolution. The domain adopts a Tudor-like fold that is similar to other RNA polymerase interaction domains, including that of the prototype transcription-repair coupling factor Mfd. Removal or mutation of the interaction domain reduces the ability of PcrA/UvrD to interact with and to remodel RNA polymerase complexes in vitro. The implications of this work for our understanding of the role of PcrA/UvrD at the interface of DNA replication, transcription and repair are discussed.
Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , DNA Helicases/química , DNA Helicases/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Aminoácidos/química , Geobacillus stearothermophilus/enzimologia , Modelos Moleculares , Ligação Proteica , Elongação da Transcrição Genética , Domínio TudorRESUMO
Neurofibromatosis type 2 (NF2) is a rare autosomal dominant disorder (incidence 1:33 000-40 000) characterized by formation of central nervous system tumors, due to mutation in the NF2 gene on chromosome 22q12. Vestibular schwannomas are the hallmark lesion, affecting 95% of individuals and typically occur bilaterally. Schwannomas commonly occur on other nerves intracranially and in the spinal compartment, along with meningiomas, ependymomas, and gliomas. Although histologically benign, tumors are associated with significant morbidity due to multiple problems including hearing and vision loss, gait abnormalities, paralysis, pain, and seizures. Risk of early mortality from brainstem compression and other complications is significant. Severity of disease is higher when NF2 presents during childhood. Children have a more variable presentation, which can be associated with significant delays in recognition of the condition. Careful examination of the skin and eyes can identify important clinical signs of NF2 during childhood, allowing timely initiation of disease-specific surveillance and treatment. Monitoring for complications comprises clinical evaluation, along with functional testing including audiology and serial neuroimaging, which together inform decisions regarding treatment. Evidence for disease-specific medical treatment options is increasing, nevertheless most patients will benefit from multimodal treatment including surgery during their lifetime. Patient enrolment in international natural history and treatment trials offers the best opportunity to accelerate our understanding of the complications and optimal treatment of NF2, with a view to improving outcomes for all affected individuals.
Assuntos
Neurofibromatose 2/diagnóstico , Neurofibromatose 2/terapia , Criança , Humanos , Neurofibromatose 2/complicações , Neurofibromatose 2/genéticaRESUMO
This literature review aimed to determine the risk factors being used to identify children and young people who are at increased risk of engaging in self-harm and suicidal behaviour, so that optimal care can be provided for this patient group in children's medical ward settings. The two main themes that emerged were mental and neurodevelopmental disorders, and external factors. Management strategies to aid healthcare professionals in caring for this patient group were also identified. The review concludes by highlighting the need to provide healthcare professionals with continuing education about the mental health problems of children and young people, including risk factors and management strategies.