RESUMO
Polymer gel (PG) dosimetry is a valuable tool to measure complex dose distributions in 3D with a high spatial resolution. However, due to complex protocols that need to be followed for in-house produced PGs and the high costs of commercially available gels, PG gels are only rarely applied in quality assurance procedures worldwide. In this work, we provide an introduction to perform highly standardized dosimetric PG experiments using PAGAT (PolyAcrylamide Gelatine gel fabricated at ATmospheric conditions) dosimetry gel. PAGAT gel can be produced at atmospheric conditions, at low costs and is evaluated using magnetic resonance imaging (MRI). The conduction of PG experiments is described in great detail including the gel production, treatment planning, irradiation, MRI evaluation and post-processing procedure. Furthermore, a plugin in an open source image processing tool for post-processing is provided free of charge that allows a standardized and reproducible analysis of PG experiments.
Assuntos
Radiometria , Géis , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , PolímerosRESUMO
BACKGROUND AND PURPOSE: Endovascular embolization using liquid embolic agents is a safe and effective treatment option for AVMs and dural arteriovenous fistulas. The aim of this study was to assess the degree of artifact inducement by the most frequently used liquid embolic agents in conventional CT in an experimental in vitro model. MATERIALS AND METHODS: Dimethyl-sulfoxide-compatible tubes were filled with the following liquid embolic agents (n = 10, respectively): Onyx 18, all variants of Squid, PHIL 25%, PHIL LV, and n-BCA mixed with iodized oil. After inserting the tubes into a CT imaging phantom, we acquired images. Artifacts were graded quantitatively by the use of Hounsfield units in a donut-shaped ROI using a customized software application that was specifically designed for this study and were graded qualitatively using a 5-point scale. RESULTS: Quantitative and qualitative analyses revealed the most artifacts for Onyx 18 and the least artifacts for n-BCA, PHIL 25%, and PHIL LV. Squid caused more artifacts compared with PHIL, both for the low-viscosity and for the extra-low-viscosity versions (eg, quantitative analysis, Squid 18: mean ± SD, 30.3 ± 9.7 HU versus PHIL 25%: mean ± SD, 10.6 ± 0.8 HU; P < .001). Differences between the standard and low-density variants of Squid were observed only quantitatively for Squid 12. There were no statistical differences between the different concentrations of Squid and PHIL. CONCLUSIONS: In this systematic in vitro analysis investigating the most commonly used liquid embolic agents, relevant differences in CT imaging artifacts could be demonstrated. Ethylene-vinyl alcohol-based liquid embolic agents induced more artifacts compared with liquid embolic agents that use iodine as a radiopaque component.
Assuntos
Artefatos , Embolização Terapêutica , Imagens de Fantasmas , Tomografia Computadorizada por Raios X , Dimetil Sulfóxido , Combinação de Medicamentos , Embolização Terapêutica/métodos , Técnicas In Vitro , Polivinil , Tantálio , Tomografia Computadorizada por Raios X/métodosRESUMO
PURPOSE: Especially in the field of radiation oncology, handling a large variety of voluminous datasets from various information systems in different documentation styles efficiently is crucial for patient care and research. To date, conducting retrospective clinical analyses is rather difficult and time consuming. With the example of patients with pancreatic cancer treated with radio-chemotherapy, we performed a therapy evaluation by using an analysis system connected with a documentation system. MATERIALS AND METHODS: A total number of 783 patients have been documented into a professional, database-based documentation system. Information about radiation therapy, diagnostic images and dose distributions have been imported into the web-based system. RESULTS: For 36 patients with disease progression after neoadjuvant chemoradiation, we designed and established an analysis workflow. After an automatic registration of the radiation plans with the follow-up images, the recurrence volumes are segmented manually. Based on these volumes the DVH (dose volume histogram) statistic is calculated, followed by the determination of the dose applied to the region of recurrence. All results are saved in the database and included in statistical calculations. CONCLUSION: The main goal of using an automatic analysis tool is to reduce time and effort conducting clinical analyses, especially with large patient groups. We showed a first approach and use of some existing tools, however manual interaction is still necessary. Further steps need to be taken to enhance automation. Already, it has become apparent that the benefits of digital data management and analysis lie in the central storage of data and reusability of the results. Therefore, we intend to adapt the analysis system to other types of tumors in radiation oncology.