Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 630(Pt B): 269-280, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36327729

RESUMO

Zn-air batteries (ZABs) are promising electrochemical devices to store energy. Metal oxide perovskites mixed with carbon materials are highlighted as interesting materials for this application because of their appropriate bifunctional performance in oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The interaction between both components of the electrocatalyst is important in the bifunctional electrocatalytic activity, and the mixing method plays an important role in this interaction. Then, different mixing methods have been studied in this work (ball-milling, mortar and manual shaking). The use of different physicochemical techniques such as temperature programmed desorption (TPD), temperature programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS) in the materials characterization, allows us to conclude that the mixing method strongly influences the particle size and the interaction between both components, which determine the final electrocatalytic activity. The materials prepared by ball-milling displayed the best performance. Herein, the experimental conditions were optimized to obtain electrocatalysts with enhanced electrocatalytic activity for ORR and OER. Low rotating speed, air atmosphere and low ball-milling time generate electrocatalysts with a small nanoparticle size, more homogeneous and with a higher interaction between both components, which enhances electron transfer, and consequently, the overall oxygen-involved reactions. The best electrocatalyst obtained was studied as air-electrode in a Zn-air battery and it was compared to a commercial Pt/C electrocatalyst, obtaining higher cyclability (55.2 vs 51.7 %) for 30 h, and higher energy density at 5 mA/cm2 (764 mAh/g vs 741 mAh/g).

2.
Environ Res ; 214(Pt 1): 113731, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35753372

RESUMO

Transition metal oxide-based materials are an interesting alternative to substitute noble-metal based catalyst in energy conversion devices designed for oxygen reduction (ORR), oxygen evolution (OER) and hydrogen evolution reactions (HER). Perovskite (ABO3) and spinel (AB2O4) oxides stand out against other structures due to the possibility of tailoring their chemical composition and, consequently, their properties. Particularly, the electrocatalytic performance of these materials depends on features such as chemical composition, crystal structure, nanostructure, cation substitution level, eg orbital filling or oxygen vacancies. However, they suffer from low electrical conductivity and surface area, which affects the catalytic response. To mitigate these drawbacks, they have been combined with carbon materials (e.g. carbon black, carbon nanotubes, activated carbon, and graphene) that positively influence the overall catalytic activity. This review provides an overview on tunable perovskites (mainly lanthanum-based) and spinels featuring 3d metal cations such as Mn, Fe, Co, Ni and Cu on octahedral sites, which are known to be active for the electrochemical energy conversion.

3.
Environ Res ; 204(Pt B): 112126, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34563521

RESUMO

In this study, we synthesized MnFe2O4 solid nanospheres (MSN) calcined at different temperatures (200-500 °C) and MSN-based materials mixed with carbon black, for their use as electrocatalysts in the oxygen reduction reaction (ORR) in alkaline medium (0.1 M KOH). It was demonstrated that the calcination temperature of MSN material determined its chemical surface composition and microstructure and it had an important effect on the electrocatalytic properties for ORR, which in turn was reflected in the performance of MSN/CB-based electrocatalysts. The study revealed that the presence of Mn species plays a key role in the ORR activity. Among tested, MSN200/CB and MSN350/CB exhibited the best electrochemical performances together with outstanding stability.


Assuntos
Nanosferas , Catálise , Compostos Férricos , Compostos de Manganês , Oxirredução , Oxigênio
4.
J Colloid Interface Sci ; 556: 658-666, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31499437

RESUMO

The chemical composition of a LaMnO3 perovskite was modified sequentially by an improved sol-gel method to include cobalt centers in some B sites formerly occupied by Mn. In this way, a representative set of materials of general formula LaMn1-xCoxO3 was obtained whose composition extends from LaMnO3 to LaCoO3. These perovskites, as promising materials for oxygen reduction or oxygen evolution reactions, were characterized by several imaging (SEM), spectroscopic (XPS, EDX) and diffraction (XRD) techniques to elucidate their structure and to demonstrate the existence of composition differences between the catalytic surface and the bulk material. Specifically, it was found that lanthanum ions prevail at the surface of the catalyst but high cobalt-substitution levels stimulate the surface enrichment in B cations in their respective higher oxidation states (Mn4+ and Co3+ against Mn3+ and Co2+). This phenomenon opens the possibility of tuning their electrocatalytic properties and to synthesize suitable materials for electrochemical reactions involving molecular oxygen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...