RESUMO
The Animal Metabolite Database (AMDB, https://amdb.online) is a freely accessible database with built-in statistical analysis tools, allowing one to browse and compare quantitative metabolomics data and raw NMR and MS data, as well as sample metadata, with a focus on the metabolite concentrations rather than on the raw data itself. AMDB also functions as a platform for the metabolomics community, providing convenient deposition and exchange of quantitative metabolomic data. To date, the majority of the data in AMDB relate to the metabolite content of the eye lens and blood of vertebrates, primarily wild species from Siberia, Russia and laboratory rodents. However, data on other tissues (muscle, heart, liver, brain, and more) are also present, and the list of species and tissues is constantly growing. Typically, every sample in AMDB contains concentrations of 60-90 of the most abundant metabolites, provided in nanomoles per gram of wet tissue weight (nmol/g). We believe that AMDB will become a widely used tool in the community, as typical metabolite baseline concentrations in tissues of animal models will aid in a wide variety of fundamental and applied scientific fields, including, but not limited to, animal modeling of human diseases, assessment of medical formulations, and evolutionary and environmental studies.
RESUMO
Thermal and enzymatic reactions can significantly change the tissue metabolomic content during the sample preparation. In this work, we evaluated the stability of metabolites in human whole blood, serum, and rat brain, as well as in metabolomic extracts from these tissues. We measured the concentrations of 63 metabolites in brain and 52 metabolites in blood. We have shown that metabolites in the extracts from biological tissues are stable within 24 h at 4 °C. Serum and whole blood metabolomes are also rather stable, changes in metabolomic content of the whole blood homogenate become apparent only after 1-2 h of incubation at 4 °C, and become strong after 24 h. The most significant changes correspond to energy metabolites: the concentrations of ATP and ADP decrease fivefold, and the concentrations of NAD, NADH, and NADPH decrease below the detectable level. A statistically significant increase was observed for AMP, IMP, hypoxanthine, and nicotinamide. The brain tissue is much more metabolically active than human blood, and significant metabolomic changes occur already within the first several minutes during the brain harvest and sample homogenization. At a longer timescale (hours), noticeable changes were observed for all classes of compounds, including amino acids, organic acids, alcohols, amines, sugars, nitrogenous bases, nucleotides, and nucleosides.