Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Food Funct ; 14(18): 8217-8228, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37615673

RESUMO

Flavan-3-ols are bioactive compounds found in a variety of fruits and vegetables (F&V) that have been linked to positive health benefits. Increasing habitual flavan-3-ol intake is challenged by the generally low consumption of F&V. While smoothies are a commonly endorsed, consumer-accepted means to increase the daily intake of these important foods, fruits used for smoothie preparation can have a high polyphenol oxidase (PPO) activity and thus potentially affect the content and bioavailability of flavan-3-ols. To assess whether or not consuming freshly prepared smoothies made with different PPO-containing fruit impacts the bioavailability of the flavan-3-ols, a controlled, single blinded and cross-over study was conducted in healthy men (n = 8) who consumed a flavan-3-ol-containing banana-based smoothie (high-PPO drink), a flavan-3-ol-containing mixed berry smoothie (low-PPO drink) and flavan-3-ols in a capsule format (control). The peak plasma concentration (Cmax) of flavan-3-ol metabolites after capsule intake was 680 ± 78 nmol L-1, which was similar to the levels detected after the intake of the low PPO drink. In contrast, the intake of the high PPO drink resulted in a Cmax of 96 ± 47 nmol L-1, 84% lower than that obtained after capsule intake. In a subsequent study (n = 11), flavan-3-ols were co-ingested with a high-PPO banana drink but contact prior to intake was prevented. In this context, plasma flavan-3-ol levels were still reduced, suggesting an effect possibly related to post-ingestion PPO activity degrading flavan-3-ols in the stomach. There was a substantial range in the PPO activity detected in 18 different fruits, vegetables and plant-derived dietary products. In conclusion, bioavailability of flavan-3-ols, and most likely other dietary polyphenol bioactives, can be reduced substantially by the co-ingestion of high PPO-containing products, the implications of which are of importance for dietary advice and food preparation both at home and in industrial settings.


Assuntos
Frutas , Magnoliopsida , Masculino , Humanos , Disponibilidade Biológica , Estudos Cross-Over , Catecol Oxidase , Nível de Saúde
2.
Mol Nutr Food Res ; 67(17): e2300281, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37423968

RESUMO

SCOPE: Dietary flavan-3-ols are known to mediate cardiovascular benefits. Currently, it is assumed that the levels of flavan-3-ol catabolites detected in humans, 5-(3',4'-dihydroxyphenyl)-γ-valerolactone (γVL) and 5-(3',4'-dihydroxyphenyl)-γ-valeric acid (γVA), and their corresponding phase II metabolites, are determined exclusively by the action of the gut microbiome. However, a family of human proteins, paraoxonase (PON), can theoretically hydrolyze γVL metabolites into the corresponding γVAs. This study aims to determine if PON is involved in γVL and γVA metabolism in humans. METHODS AND RESULTS: A rapid conversion of γVL into γVA is detected in serum ex vivo (half-life = 9.8 ± 0.3 min) that is catalyzed by PON1 and PON3 isoforms. Phase II metabolites of γVL are also reacted with PON in serum. Following an intake of flavan-3-ol in healthy males (n = 13), the profile of γVA metabolites detected is consistent with that predicted from the reactivity of γVL metabolites with PON in serum. Furthermore, common PON polymorphisms are evaluated to assess the use of γVL metabolites as biomarkers of flavan-3-ol intake. CONCLUSION: PONs are involved in flavan-3-ol metabolic pathway in humans. PON polymorphisms have a minor contribution to inter-individual differences in the levels of γVL metabolites, without affecting their use as a nutritional biomarker.


Assuntos
Arildialquilfosfatase , Flavonoides , Masculino , Humanos , Arildialquilfosfatase/genética , Flavonoides/metabolismo , Lactonas
3.
Free Radic Biol Med ; 196: 1-8, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36621554

RESUMO

Flavan-3-ols, including the flavan-3-ol monomer (-)-epicatechin, are dietary bioactives known to mediate beneficial cardiovascular effects in humans. Recent studies showed that flavan-3-ols could interact with methylxanthines, evidenced by an increase in flavan-3-ol bioavailability with a concomitant increase in flavan-3-ol intake-mediated vascular effects. This study aimed at elucidating flavan-3-ol-methylxanthine interactions in humans in vivo by evaluating the specific contributions of theobromine and caffeine on flavan-3-ol bioavailability. In ileostomists, the effect of methylxanthines on the efflux of flavan-3-ol metabolites in the small intestine was assessed, a parameter important to an understanding of the pharmacokinetics of flavan-3-ols in humans. In a randomized, controlled, triple cross-over study in volunteers with a functional colon (n = 10), co-ingestion of flavan-3-ols and cocoa methylxanthines, mainly represented by theobromine, increased peak circulatory levels (Cmax) of flavan-3-ols metabolites (+21 ± 8%; p < 0.05). Conversely, caffeine did not mediate a statistically significant effect on flavan-3-ol bioavailability (Cmax = +10 ± 8%, p = n.s.). In a subsequent randomized, controlled, double cross-over study in ileostomists (n = 10), cocoa methylxanthines did not affect circulatory levels of flavan-3-ol metabolites, suggesting potential differences in flavan-3-ol bioavailability compared to volunteers with a functional colon. The main metabolite in ileal fluid was (-)-epicatechin-3'-sulfate, however, no differences in flavan-3-ol metabolites in ileal fluid were observed after flavan-3-ol intake with and without cocoa methylxanthines. Taken together, these results demonstrate a differential effect of caffeine and theobromine in modulating flavan-3-ol bioavailability when these bioactives are co-ingested. These findings should be considered when comparing the effects mediated by the intake of flavan-3-ol-containing foods and beverages and the amount and type of methylxanthines present in the ingested matrixes. Ultimately, these insights will be of value to further optimize current dietary recommendations for flavan-3-ol intake. CLINICAL TRIAL REGISTRATION NUMBER: This work was registered at clinicaltrials.gov as NCT03526107 (study part 1, volunteers with functional colon) and NCT03765606 (study part 2, volunteers with an ileostomy).


Assuntos
Cacau , Catequina , Humanos , Cafeína/metabolismo , Teobromina/metabolismo , Ileostomia , Disponibilidade Biológica , Estudos Cross-Over , Flavonoides/metabolismo , Voluntários , Colo/metabolismo
4.
Plant Biotechnol J ; 20(11): 2135-2148, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35869808

RESUMO

Improving biological nitrogen fixation (BNF) in cereal crops is a long-sought objective; however, no successful modification of cereal crops showing increased BNF has been reported. Here, we described a novel approach in which rice plants were modified to increase the production of compounds that stimulated biofilm formation in soil diazotrophic bacteria, promoted bacterial colonization of plant tissues and improved BNF with increased grain yield at limiting soil nitrogen contents. We first used a chemical screening to identify plant-produced compounds that induced biofilm formation in nitrogen-fixing bacteria and demonstrated that apigenin and other flavones induced BNF. We then used CRISPR-based gene editing targeting apigenin breakdown in rice, increasing plant apigenin contents and apigenin root exudation. When grown at limiting soil nitrogen conditions, modified rice plants displayed increased grain yield. Biofilm production also modified the root microbiome structure, favouring the enrichment of diazotrophic bacteria recruitment. Our results support the manipulation of the flavone biosynthetic pathway as a feasible strategy for the induction of biological nitrogen fixation in cereals and a reduction in the use of inorganic nitrogen fertilizers.


Assuntos
Fixação de Nitrogênio , Oryza , Fixação de Nitrogênio/genética , Oryza/metabolismo , Solo , Edição de Genes , Apigenina/metabolismo , Fertilizantes , Produtos Agrícolas , Bactérias/genética , Nitrogênio/metabolismo , Grão Comestível/metabolismo , Biofilmes
5.
J Proteomics ; 263: 104603, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35568144

RESUMO

Dysfunction of blood-brain barrier formed by endothelial cells of cerebral blood vessels, plays a key role in development of neurodegenerative disorders. Epicatechin exerts vasculo-protective effects through genomic modifications, however molecular mechanisms of action, particularly on brain endothelial cells, are largely unknow. This study aimed to use a multi-omic approach (transcriptomics of mRNA, miRNAs and lncRNAs, and proteomics), to provide novel in-depth insights into molecular mechanisms of how metabolites affect brain endothelial cells under lipid-stressed (as a model of BBB dysfunction) at physiological concentrations. We showed that metabolites can simultaneously modulate expression of protein-coding, non-coding genes and proteins. Integrative analysis revealed interactions between different types of RNAs and form functional groups of genes involved in regulation of processing like VEGF-related functions, cell signaling, cell adhesion and permeability. Molecular modeling of genomics data predicted that metabolites decrease endothelial cell permeability, increased by lipotoxic stress. Correlation analysis between genomic modifications observed and genomic signature of patients with vascular dementia and Alzheimer's diseases showed opposite gene expression changes. Taken together, this study describes for the first time a multi-omic mechanism of action by which (-)-epicatechin metabolites could preserve brain vascular endothelial cell integrity and reduce the risk of neurodegenerative diseases. SIGNIFICANCE: Dysfunction of the blood-brain barrier (BBB), characterized by dysfunction of endothelial cells of cerebral blood vessels, result in an increase in permeability and neuroinflammation which constitute a key factor in the development neurodegenerative disorders. Even though it is suggested that polyphenols can prevent or delay the development of these disorders, their impact on brain endothelial cells and underlying mechanisms of actions are unknow. This study aimed to use a multi-omic approach including analysis of expression of mRNA, microRNA, long non-coding RNAs, and proteins to provide novel global in-depth insights into molecular mechanisms of how (-)-epicatechin metabolites affect brain microvascular endothelial cells under lipid-stressed (as a model of BBB dysfunction) at physiological relevant conditions. The results provide basis of knowledge on the capacity of polyphenols to prevent brain endothelial dysfunction and consequently neurodegenerative disorders.


Assuntos
Catequina , Microbioma Gastrointestinal , MicroRNAs , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Catequina/metabolismo , Catequina/farmacologia , Células Endoteliais/metabolismo , Genômica , Humanos , Lipídeos , MicroRNAs/metabolismo , Polifenóis , RNA Mensageiro/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Free Radic Biol Med ; 185: 90-96, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35452808

RESUMO

The bioavailability of apigenin and its O-glycosides in humans was investigated with apigenin-4'-glucuronide (Ap-4'-GlcUA), apigenin-7-glucuronide and apigenin-7-sulfate being identified as in vivo metabolites. Apigenin per se was poorly absorbed with metabolites equivalent to 0.5% of intake excreted in urine 0-24 h post-intake. Consumption of a parsley drink containing apigenin-7-O-(2″-O-apiosyl)glucoside resulted in the peak plasma concentration (Cmax) of Ap-4'-GlcUA occurring after 4 h, indicative of absorption in the lower gastrointestinal tract (GIT). Urinary excretion of the three metabolites corresponded to 11.2% of intake. Ingestion of dried powdered parsley leaves with yogurt extended the Cmax of Ap-4'-GlcUA to 6 h. Consumption of chamomile tea containing apigenin-7'-O-glucoside resulted in a 2 h Cmax of Ap-4'-GlcUA, in keeping with absorption in the upper GIT. Urinary excretion was equivalent to 34% of intake. Intake of the parsley drink provided information on intra- and inter-individual variations in the level of excretion of the apigenin metabolites. CLINICAL TRAIL REGISTRATION NUMBER: This trail was registered at clinicaltrials.gov as NCT03526081.


Assuntos
Apigenina , Glicosídeos , Adulto , Disponibilidade Biológica , Glucosídeos , Glucuronídeos , Humanos , Masculino
7.
Food Funct ; 12(17): 7762-7772, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34231610

RESUMO

Nutritional biomarkers are critical tools to objectively assess intake of nutrients and other compounds from the diet. In this context, it is essential that suitable analytical methods are available for the accurate quantification of biomarkers in large scale studies. Recently, structurally-related (-)-epicatechin metabolites (SREMs) and 5-(3',4'-dihydroxyphenyl)-γ-valerolactone metabolites (gVLMs) were identified as biomarkers of intake of flavanols and procyanidins, a group of polyphenol bioactives. This study aimed at validating a high throughput method for the quantification of SREMs and gVLMs in plasma along with methylxanthines (MXs), dietary compounds known to interact with flavanol and procyanidin effects. To accomplish this, a full set of authentic analytical standards were used to optimize a micro solid phase extraction method for sample preparation coupled to HPLC-MS detection. Isotopically-labelled standards for all analytes were included to correct potential matrix effects on quantification. Average accuracies of 101%, 93% and 103% were obtained, respectively, for SREMs, gVLMs and MXs. Intra- and inter-day repeatability values were <15%. The method showed linear responses for all analytes (>0.993). Most SREMs and gVLMs had limits of quantifications <5 nM while limits of quantification of MXs were 0.2 µM. All analytes were stable under different tested processing conditions. Finally, the method proved to be suitable to assess SREMs, gVLMs and MXs in plasma collected after single acute and daily intake of cocoa-derived test materials. Overall, this method proved to be a valid analytical tool for high throughput quantification of flavanol and procyanidin biomarkers and methylxanthines in plasma.


Assuntos
Biflavonoides/sangue , Catequina/sangue , Cromatografia Líquida de Alta Pressão/métodos , Flavonóis/sangue , Ensaios de Triagem em Larga Escala/métodos , Espectrometria de Massas/métodos , Proantocianidinas/sangue , Xantinas/sangue , Biflavonoides/isolamento & purificação , Biomarcadores/sangue , Catequina/isolamento & purificação , Flavonóis/isolamento & purificação , Humanos , Plasma/química , Proantocianidinas/isolamento & purificação , Microextração em Fase Sólida , Xantinas/isolamento & purificação
8.
Sci Rep ; 10(1): 17964, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087825

RESUMO

Flavan-3-ols are a group of bioactive compounds that have been shown to improve vascular function in intervention studies. They are therefore of great interest for the development of dietary recommendation for the prevention of cardio-vascular diseases. However, there are currently no reliable data from observational studies, as the high variability in the flavan-3-ol content of food makes it difficult to estimate actual intake without nutritional biomarkers. In this study, we investigated cross-sectional associations between biomarker-estimated flavan-3-ol intake and blood pressure and other CVD risk markers, as well as longitudinal associations with CVD risk in 25,618 participants of the European Prospective Investigation into Cancer (EPIC) Norfolk cohort. High flavan-3-ol intake, achievable as part of an habitual diet, was associated with a significantly lower systolic blood pressure (- 1.9 (- 2.7; - 1.1) mmHg in men and - 2.5 (- 3.3; - 1.8) mmHg in women; lowest vs highest decile of biomarker), comparable to adherence to a Mediterranean Diet or moderate salt reduction. Subgroup analyses showed that hypertensive participants had stronger inverse association between flavan-3-ol biomarker and systolic blood pressure when compared to normotensive participants. Flavanol intake could therefore have a role in the maintenance of cardiovascular health on a population scale.


Assuntos
Pressão Sanguínea , Ingestão de Alimentos/fisiologia , Comportamento Alimentar/fisiologia , Flavonoides/administração & dosagem , Hipertensão/prevenção & controle , Fenômenos Fisiológicos da Nutrição/fisiologia , Idoso , Estudos Transversais , Feminino , Fatores de Risco de Doenças Cardíacas , Humanos , Hipertensão/fisiopatologia , Masculino , Melanesia , Pessoa de Meia-Idade
9.
Sci Rep ; 9(1): 13108, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31511603

RESUMO

Data from dietary intervention studies suggest that intake of (-)-epicatechin mediates beneficial vascular effects in humans. However, population-based investigations are required to evaluate associations between habitual intake and health and these studies rely on accurate estimates of intake, which nutritional biomarkers can provide. Here, we evaluate a series of structurally related (-)-epicatechin metabolites (SREM), particularly (-)-epicatechin-3'-glucuronide, (-)-epicatechin-3'-sulfate and 3'-O-methyl-(-)-epicatechin-5-sulfate (SREMB), as flavan-3-ol and (-)-epicatechin intake. SREMB in urine proved to be a specific indicator of (-)-epicatechin intake, showing also a strong correlation with the amount of (-)-epicatechin ingested (R2: 0.86 (95% CI 0.8l; 0.92). The median recovery of (-)-epicatechin as SREMB in 24 h urine was 10% (IQR 7-13%) and we found SREMB in the majority of participants of EPIC Norfolk (83% of 24,341) with a mean concentration of 2.4 ± 3.2 µmol/L. Our results show that SREMB are suitable as biomarker of (-)-epicatechin intake. According to evaluation criteria from IARC and the Institute of Medicine, the results obtained support use of SREMB as a recovery biomarker to estimate actual intake of (-)-epicatechin.


Assuntos
Catequina/metabolismo , Dieta , Flavonoides/farmacologia , Adulto , Biomarcadores/metabolismo , Estudos de Coortes , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade
10.
Free Radic Biol Med ; 124: 97-103, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-29870748

RESUMO

Plant-derived, dietary (poly)phenols have potential effects on disease-risk reduction and primary disease prevention. The characterization of (poly)phenol absorption, distribution, metabolism and excretion (ADME) is recognized as crucial step to further advance nutritional and biomedical research of these compounds; and given that (poly)phenols are extensively metabolized after ingestion, accurate assessments of their in vivo metabolites is required. It has become common practice to use unmetabolized parent compounds as reference standards when quantifying (poly)phenol metabolites by LC-MS, although little is known about the accuracy of this approach. To investigate this situation with routinely used LC-MS conditions, the signal yielded by the flavan-3-ol (-)-epicatechin was compared to those of authentic standards of its phase II and microbiota-derived metabolites. The results obtained revealed underestimations up to 94% and overestimations up to 113% of individual epicatechin metabolites. Inaccurate quantitative estimates were also obtained when phase II metabolites of other (poly)phenols were quantified by reference to their unmetabolized parent compounds. This demonstrates the importance of using structurally-identical authentic metabolites as reference compounds when quantifying (poly)phenol metabolites by LC-MS. This is of importance, not just to the accuracy of ADME studies, but for the identification and validation of (poly)phenol metabolites as biomarkers of intake in epidemiological studies.


Assuntos
Catequina/análise , Catequina/metabolismo , Cromatografia Líquida/normas , Metaboloma , Polifenóis/análise , Polifenóis/metabolismo , Espectrometria de Massas em Tandem/normas , Cromatografia Líquida/métodos , Humanos , Espectrometria de Massas em Tandem/métodos
11.
Am J Clin Nutr ; 102(6): 1425-35, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26537937

RESUMO

BACKGROUND: Evidence from dietary intervention studies shows that the intake of flavanols and procyanidins can be beneficial for cardiovascular health. Nevertheless, there is a clear need for advancing our understanding with regard to safe amounts of intake for these bioactives. OBJECTIVE: The aim was to investigate in healthy adults the effects of cocoa flavanol (CF) intake amount and intake duration on blood pressure, platelet function, metabolic variables, and potential adverse events (AEs). DESIGN: This investigation consisted of 2 parts. Part 1 was an open-label, intake-amount escalation study, in which 34 healthy adults (aged 35-55 y) consumed escalating amounts of CFs, ranging from 1000 to 2000 mg/d over 6 wk. Primary outcomes were blood pressure and platelet function, select metabolic variables, and the occurrence and severity of AEs. Secondary outcomes included plasma concentrations of CF-derived metabolites and methylxanthines. On the basis of the outcomes of study part 1, and assessing the same outcome measures, part 2 of this investigation was a controlled, randomized, double-masked, 2-parallel-arm dietary intervention study in which healthy participants (aged 35-55 y) were asked to consume for 12 consecutive weeks up to 2000 mg CFs/d (n = 46) or a CF-free control (n = 28). RESULTS: Daily intake of up to 2000 mg CFs/d for 12 wk was not associated with significant changes in blood pressure or platelet function compared with CF-free controls in normotensive, healthy individuals who exhibited a very low risk of cardiovascular disease. There were no clinically relevant changes in the metabolic variables assessed in either of the groups. AEs reported were classified as mild in severity and did not significantly differ between study arms. CONCLUSION: The consumption of CFs in amounts up to 2000 mg/d for 12 wk was well tolerated in healthy men and women. This trial was registered at clinicaltrials.gov as NCT02447770 (part 1) and NCT02447783 (part 2).


Assuntos
Antioxidantes/uso terapêutico , Cacau/química , Doenças Cardiovasculares/prevenção & controle , Suplementos Nutricionais , Flavonóis/uso terapêutico , Sementes/química , Adulto , Antioxidantes/administração & dosagem , Antioxidantes/efeitos adversos , Antioxidantes/metabolismo , Biomarcadores/sangue , Pressão Sanguínea , California/epidemiologia , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/metabolismo , Estudos de Coortes , Suplementos Nutricionais/efeitos adversos , Método Duplo-Cego , Feminino , Flavonóis/administração & dosagem , Flavonóis/efeitos adversos , Flavonóis/metabolismo , Humanos , Análise de Intenção de Tratamento , Perda de Seguimento , Masculino , Pessoa de Meia-Idade , Pacientes Desistentes do Tratamento , Agregação Plaquetária , Fatores de Risco , Xantinas/sangue , Xantinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA