Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(6): e17352, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38822670

RESUMO

The Arctic is the fastest-warming region on the planet, and the lengthening ice-free season is opening Arctic waters to sub-Arctic species such as the killer whale (Orcinus orca). As apex predators, killer whales can cause significant ecosystem-scale changes. Setting conservation priorities for killer whales and their Arctic prey species requires knowledge of their evolutionary history and demographic trajectory. Using whole-genome resequencing of 24 killer whales sampled in the northwest Atlantic, we first explored the population structure and demographic history of Arctic killer whales. To better understand the broader geographic relationship of these Arctic killer whales to other populations, we compared them to a globally sampled dataset. Finally, we assessed threats to Arctic killer whales due to anthropogenic harvest by reviewing the peer-reviewed and gray literature. We found that there are two highly genetically distinct, non-interbreeding populations of killer whales using the eastern Canadian Arctic. These populations appear to be as genetically different from each other as are ecotypes described elsewhere in the killer whale range; however, our data cannot speak to ecological differences between these populations. One population is newly identified as globally genetically distinct, and the second is genetically similar to individuals sampled from Greenland. The effective sizes of both populations recently declined, and both appear vulnerable to inbreeding and reduced adaptive potential. Our survey of human-caused mortalities suggests that harvest poses an ongoing threat to both populations. The dynamic Arctic environment complicates conservation and management efforts, with killer whales adding top-down pressure on Arctic food webs crucial to northern communities' social and economic well-being. While killer whales represent a conservation priority, they also complicate decisions surrounding wildlife conservation and resource management in the Arctic amid the effects of climate change.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Orca , Animais , Orca/fisiologia , Regiões Árticas , Espécies em Perigo de Extinção , Canadá
2.
Proc Biol Sci ; 291(2021): 20240524, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38628123

RESUMO

Philopatric kin-based societies encourage a narrow breadth of conservative behaviours owing to individuals primarily learning from close kin, promoting behavioural homogeneity. However, weaker social ties beyond kin, and across a behaviourally diverse social landscape, could be sufficient to induce variation and a greater ecological niche breadth. We investigated a network of 457 photo-identified killer whales from Norway (548 encounters in 2008-2021) with diet data available (46 mixed-diet individuals feeding on both fish and mammals, and 411 exclusive fish-eaters) to quantify patterns of association within and between diet groups, and to identify underlying correlates. We genotyped a subset of 106 whales to assess patterns of genetic differentiation. Our results suggested kinship as main driver of social bonds within and among cohesive social units, while diet was most likely a consequence reflective of cultural diffusion, rather than a driver. Flexible associations within and between ecologically diverse social units led to a highly connected network, reducing social and genetic differentiation between diet groups. Our study points to a role of social connectivity, in combination with individual behavioural variation, in influencing population ecology in killer whales.


Assuntos
Orca , Animais , Orca/genética , Comportamento Social , Ecossistema , Comportamento Predatório , Dieta
3.
Curr Biol ; 34(5): 1142-1147.e6, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38350445

RESUMO

Directly observing the chronology and tempo of adaptation in response to ecological change is rarely possible in natural ecosystems. Sedimentary ancient DNA (sedaDNA) has been shown to be a tractable source of genome-scale data of long-dead organisms1,2,3 and to thereby potentially provide an understanding of the evolutionary histories of past populations.4,5 To date, time series of ecosystem biodiversity have been reconstructed from sedaDNA, typically using DNA metabarcoding or shotgun sequence data generated from less than 1 g of sediment.6,7 Here, we maximize sequence coverage by extracting DNA from ∼50× more sediment per sample than the majority of previous studies1,2,3 to achieve genotype resolution. From a time series of Late Pleistocene sediments spanning from a marine to freshwater ecosystem, we compare adaptive genotypes reconstructed from the environmental genomes of three-spined stickleback at key time points of this transition. We find a staggered temporal dynamic in which freshwater alleles at known loci of large effect in marine-freshwater divergence of three-spined stickleback (e.g., EDA)8 were already established during the brackish phase of the formation of the isolation basin. However, marine alleles were still detected across the majority of marine-freshwater divergence-associated loci, even after the complete isolation of the lake from marine ingression. Our retrospective approach to studying adaptation from environmental genomes of three-spined sticklebacks at the end of the last glacial period complements contemporary experimental approaches9,10,11 and highlights the untapped potential for retrospective "evolve and resequence" natural experiments using sedaDNA.


Assuntos
Ecossistema , Smegmamorpha , Animais , Adaptação Fisiológica/genética , Smegmamorpha/genética , Estudos Retrospectivos , Lagos
4.
J Hered ; 114(6): 598-611, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37821799

RESUMO

Cooperative hunting between humans and killer whales (Orcinus orca) targeting baleen whales was reported in Eden, New South Wales, Australia, for almost a century. By 1928, whaling operations had ceased, and local killer whale sightings became scarce. A killer whale from the group, known as "Old Tom," washed up dead in 1930 and his skeleton was preserved. How these killer whales from Eden relate to other populations globally and whether their genetic descendants persist today remains unknown. We extracted and sequenced DNA from Old Tom using ancient DNA techniques. Genomic sequences were then compared with a global dataset of mitochondrial and nuclear genomes. Old Tom shared a most recent common ancestor with killer whales from Australasia, the North Atlantic, and the North Pacific, having the highest genetic similarity with contemporary New Zealand killer whales. However, much of the variation found in Old Tom's genome was not shared with these widespread populations, suggesting ancestral rather than ongoing gene flow. Our genetic comparisons also failed to find any clear descendants of Tom, raising the possibility of local extinction of this group. We integrated Traditional Custodian knowledge to recapture the events in Eden and recognize that Indigenous Australians initiated the relationship with the killer whales before European colonization and the advent of commercial whaling locally. This study rectifies discrepancies in local records and provides new insight into the origins of the killer whales in Eden and the history of Australasian killer whales.


Assuntos
Orca , Animais , Humanos , Orca/genética , Austrália , Baleias/genética , Sequência de Bases , Nova Zelândia
5.
Nat Commun ; 14(1): 4020, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463880

RESUMO

Parallel evolution provides strong evidence of adaptation by natural selection due to local environmental variation. Yet, the chronology, and mode of the process of parallel evolution remains debated. Here, we harness the temporal resolution of paleogenomics to address these long-standing questions, by comparing genomes originating from the mid-Holocene (8610-5626 years before present, BP) to contemporary pairs of coastal-pelagic ecotypes of bottlenose dolphin. We find that the affinity of ancient samples to coastal populations increases as the age of the samples decreases. We assess the youngest genome (5626 years BP) at sites previously inferred to be under parallel selection to coastal habitats and find it contained coastal-associated genotypes. Thus, coastal-associated variants rose to detectable frequencies close to the emergence of coastal habitat. Admixture graph analyses reveal a reticulate evolutionary history between pelagic and coastal populations, sharing standing genetic variation that facilitated rapid adaptation to newly emerged coastal habitats.


Assuntos
Golfinho Nariz-de-Garrafa , Genética Populacional , Animais , Genômica , Paleontologia , Golfinho Nariz-de-Garrafa/genética , Ecossistema
6.
J Hered ; 114(2): 94-109, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36971118

RESUMO

Genome sequences can reveal the extent of inbreeding in small populations. Here, we present the first genomic characterization of type D killer whales, a distinctive eco/morphotype with a circumpolar, subantarctic distribution. Effective population size is the lowest estimated from any killer whale genome and indicates a severe population bottleneck. Consequently, type D genomes show among the highest level of inbreeding reported for any mammalian species (FROH ≥ 0.65). Detected recombination cross-over events of different haplotypes are up to an order of magnitude rarer than in other killer whale genomes studied to date. Comparison of genomic data from a museum specimen of a type D killer whale that stranded in New Zealand in 1955, with 3 modern genomes from the Cape Horn area, reveals high covariance and identity-by-state of alleles, suggesting these genomic characteristics and demographic history are shared among geographically dispersed social groups within this morphotype. Limitations to the insights gained in this study stem from the nonindependence of the 3 closely related modern genomes, the recent coalescence time of most variation within the genomes, and the nonequilibrium population history which violates the assumptions of many model-based methods. Long-range linkage disequilibrium and extensive runs of homozygosity found in type D genomes provide the potential basis for both the distinctive morphology, and the coupling of genetic barriers to gene flow with other killer whale populations.


Assuntos
Orca , Animais , Orca/genética , Densidade Demográfica , Variação Genética , Genoma , Endogamia , Homozigoto
8.
Sci Adv ; 7(44): eabg1245, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34705499

RESUMO

Studying repeated adaptation can provide insights into the mechanisms allowing species to adapt to novel environments. Here, we investigate repeated evolution driven by habitat specialization in the common bottlenose dolphin. Parapatric pelagic and coastal ecotypes of common bottlenose dolphins have repeatedly formed across the oceans. Analyzing whole genomes of 57 individuals, we find that ecotype evolution involved a complex reticulated evolutionary history. We find parallel linked selection acted upon ancient alleles in geographically distant coastal populations, which were present as standing genetic variation in the pelagic populations. Candidate loci evolving under parallel linked selection were found in ancient tracts, suggesting recurrent bouts of selection through time. Therefore, despite the constraints of small effective population size and long generation time on the efficacy of selection, repeated adaptation in long-lived social species can be driven by a combination of ecological opportunities and selection acting on ancestral standing genetic variation.

9.
Mol Ecol ; 30(23): 6162-6177, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34416064

RESUMO

Runs of homozygosity (ROH) occur when offspring inherit haplotypes that are identical by descent from each parent. Length distributions of ROH are informative about population history; specifically, the probability of inbreeding mediated by mating system and/or population demography. Here, we investigated whether variation in killer whale (Orcinus orca) demographic history is reflected in genome-wide heterozygosity and ROH length distributions, using a global data set of 26 genomes representative of geographic and ecotypic variation in this species, and two F1 admixed individuals with Pacific-Atlantic parentage. We first reconstructed demographic history for each population as changes in effective population size through time using the pairwise sequential Markovian coalescent (PSMC) method. We found a subset of populations declined in effective population size during the Late Pleistocene, while others had more stable demography. Genomes inferred to have undergone ancestral declines in effective population size, were autozygous at hundreds of short ROH (<1 Mb), reflecting high background relatedness due to coalescence of haplotypes deep within the pedigree. In contrast, longer and therefore younger ROH (>1.5 Mb) were found in low latitude populations, and populations of known conservation concern. These include a Scottish killer whale, for which 37.8% of the autosomes were comprised of ROH >1.5 Mb in length. The fate of this population, in which only two adult males have been sighted in the past five years, and zero fecundity over the last two decades, may be inextricably linked to its demographic history and consequential inbreeding depression.


Assuntos
Orca , Animais , Genoma , Homozigoto , Endogamia , Masculino , Polimorfismo de Nucleotídeo Único , Densidade Demográfica , Orca/genética
10.
Mol Biol Evol ; 38(9): 3724-3736, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-33950261

RESUMO

The impact of human-mediated environmental change on the evolutionary trajectories of wild organisms is poorly understood. In particular, capacity of species to adapt rapidly (in hundreds of generations or less), reproducibly and predictably to extreme environmental change is unclear. Silene uniflora is predominantly a coastal species, but it has also colonized isolated, disused mines with phytotoxic, zinc-contaminated soils. To test whether rapid, parallel adaptation to anthropogenic pollution has taken place, we used reduced representation sequencing (ddRAD) to reconstruct the evolutionary history of geographically proximate mine and coastal population pairs and found largely independent colonization of mines from different coastal sites. Furthermore, our results show that parallel evolution of zinc tolerance has occurred without gene flow spreading adaptive alleles between mine populations. In genomic regions where signatures of selection were detected across multiple mine-coast pairs, we identified genes with functions linked to physiological differences between the putative ecotypes, although genetic differentiation at specific loci is only partially shared between mine populations. Our results are consistent with a complex, polygenic genetic architecture underpinning rapid adaptation. This shows that even under a scenario of strong selection and rapid adaptation, evolutionary responses to human activities (and other environmental challenges) may be idiosyncratic at the genetic level and, therefore, difficult to predict from genomic data.


Assuntos
Metais Pesados , Adaptação Fisiológica/genética , Ecótipo , Poluição Ambiental , Deriva Genética , Humanos , Metais Pesados/análise
11.
Curr Biol ; 31(9): 2027-2036.e8, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33705715

RESUMO

Adaptation is typically studied by comparing modern populations with contrasting environments. Individuals persisting in the ancestral habitat are typically used to represent the ancestral founding population; however, it has been questioned whether these individuals are good proxies for the actual ancestors.1 To address this, we applied a paleogenomics approach2 to directly access the ancestral genepool: partially sequencing the genomes of two 11- to 13,000-year-old stickleback recovered from the transitionary layer between marine and freshwater sediments of two Norwegian isolation lakes3 and comparing them with 30 modern stickleback genomes from the same lakes and adjacent marine fjord, in addition to a global dataset of 20 genomes.4 The ancient stickleback shared genome-wide ancestry with the modern fjord population, whereas modern lake populations have lost substantial ancestral variation following founder effects, and subsequent drift and selection. Freshwater-adaptive alleles found in one ancient stickleback genome have not risen to high frequency in the present-day population from the same lake. Comparison to the global dataset suggested incomplete adaptation to freshwater in our modern lake populations. Our findings reveal the impact of population bottlenecks in constraining adaptation due to reduced efficacy of selection on standing variation present in founder populations.


Assuntos
Smegmamorpha , Alelos , Animais , Demografia , Genômica , Humanos , Recém-Nascido , Lagos , Paleontologia , Smegmamorpha/genética
12.
Mol Ecol ; 29(24): 4783-4796, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33164287

RESUMO

Practical biodiversity conservation relies on delineation of biologically meaningful units. Manta and devil rays (Mobulidae) are threatened worldwide, yet morphological similarities and a succession of recent taxonomic changes impede the development of an effective conservation strategy. Here, we generate genome-wide single nucleotide polymorphism (SNP) data from a geographically and taxonomically representative set of manta and devil ray samples to reconstruct phylogenetic relationships and evaluate species boundaries under the general lineage concept. We show that nominal species units supported by alternative data sources constitute independently evolving lineages, and find robust evidence for a putative new species of manta ray in the Gulf of Mexico. Additionally, we uncover substantial incomplete lineage sorting indicating that rapid speciation together with standing variation in ancestral populations has driven phylogenetic uncertainty within Mobulidae. Finally, we detect cryptic diversity in geographically distinct populations, demonstrating that management below the species level may be warranted in certain species. Overall, our study provides a framework for molecular genetic species delimitation that is relevant to wide-ranging taxa of conservation concern, and highlights the potential for genomic data to support effective management, conservation and law enforcement strategies.


Assuntos
Biodiversidade , Genoma , Golfo do México , Filogenia
13.
Evol Lett ; 4(2): 94-108, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32313686

RESUMO

Evolutionary processes, including selection, can be indirectly inferred based on patterns of genomic variation among contemporary populations or species. However, this often requires unrealistic assumptions of ancestral demography and selective regimes. Sequencing ancient DNA from temporally spaced samples can inform about past selection processes, as time series data allow direct quantification of population parameters collected before, during, and after genetic changes driven by selection. In this Comment and Opinion, we advocate for the inclusion of temporal sampling and the generation of paleogenomic datasets in evolutionary biology, and highlight some of the recent advances that have yet to be broadly applied by evolutionary biologists. In doing so, we consider the expected signatures of balancing, purifying, and positive selection in time series data, and detail how this can advance our understanding of the chronology and tempo of genomic change driven by selection. However, we also recognize the limitations of such data, which can suffer from postmortem damage, fragmentation, low coverage, and typically low sample size. We therefore highlight the many assumptions and considerations associated with analyzing paleogenomic data and the assumptions associated with analytical methods.

14.
J Hered ; 110(6): 662-674, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31211393

RESUMO

Oscillations in the Earth's temperature and the subsequent retreating and advancing of ice-sheets around the polar regions are thought to have played an important role in shaping the distribution and genetic structuring of contemporary high-latitude populations. After the Last Glacial Maximum (LGM), retreating of the ice-sheets would have enabled early colonizers to rapidly occupy suitable niches to the exclusion of other conspecifics, thereby reducing genetic diversity at the leading-edge. Bottlenose dolphins (genus Tursiops) form distinct coastal and pelagic ecotypes, with finer-scale genetic structuring observed within each ecotype. We reconstruct the postglacial colonization of the Northeast Atlantic (NEA) by bottlenose dolphins using habitat modeling and phylogenetics. The AquaMaps model hindcasted suitable habitat for the LGM in the Atlantic lower latitude waters and parts of the Mediterranean Sea. The time-calibrated phylogeny, constructed with 86 complete mitochondrial genomes including 30 generated for this study and created using a multispecies coalescent model, suggests that the expansion to the available coastal habitat in the NEA happened via founder events starting ~15 000 years ago (95% highest posterior density interval: 4 900-26 400). The founders of the 2 distinct coastal NEA populations comprised as few as 2 maternal lineages that originated from the pelagic population. The low effective population size and genetic diversity estimated for the shared ancestral coastal population subsequent to divergence from the pelagic source population are consistent with leading-edge expansion. These findings highlight the legacy of the Late Pleistocene glacial cycles on the genetic structuring and diversity of contemporary populations.


Assuntos
Golfinho Nariz-de-Garrafa , Ecossistema , Animais , Biodiversidade , Golfinho Nariz-de-Garrafa/classificação , Golfinho Nariz-de-Garrafa/genética , DNA Mitocondrial , Variação Genética , Genética Populacional , Modelos Teóricos , Filogenia , Filogeografia , Densidade Demográfica , Análise de Sequência de DNA
15.
Mol Ecol ; 28(14): 3427-3444, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31131963

RESUMO

Reconstruction of the demographic and evolutionary history of populations assuming a consensus tree-like relationship can mask more complex scenarios, which are prevalent in nature. An emerging genomic toolset, which has been most comprehensively harnessed in the reconstruction of human evolutionary history, enables molecular ecologists to elucidate complex population histories. Killer whales have limited extrinsic barriers to dispersal and have radiated globally, and are therefore a good candidate model for the application of such tools. Here, we analyse a global data set of killer whale genomes in a rare attempt to elucidate global population structure in a nonhuman species. We identify a pattern of genetic homogenisation at lower latitudes and the greatest differentiation at high latitudes, even between currently sympatric lineages. The processes underlying the major axis of structure include high drift at the edge of species' range, likely associated with founder effects and allelic surfing during postglacial range expansion. Divergence between Antarctic and non-Antarctic lineages is further driven by ancestry segments with up to four-fold older coalescence time than the genome-wide average; relicts of a previous vicariance during an earlier glacial cycle. Our study further underpins that episodic gene flow is ubiquitous in natural populations, and can occur across great distances and after substantial periods of isolation between populations. Thus, understanding the evolutionary history of a species requires comprehensive geographic sampling and genome-wide data to sample the variation in ancestry within individuals.


Assuntos
Fluxo Gênico , Genoma , Orca/genética , Alelos , Animais , Regiões Antárticas , Sequência de Bases , Núcleo Celular/genética , DNA Mitocondrial/genética , Deriva Genética , Variação Genética , Geografia , Cadeias de Markov , Modelos Genéticos , Filogenia , Análise de Componente Principal
16.
Mol Ecol ; 28(2): 484-502, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30187987

RESUMO

Recent exploration into the interactions and relationship between hosts and their microbiota has revealed a connection between many aspects of the host's biology, health and associated micro-organisms. Whereas amplicon sequencing has traditionally been used to characterize the microbiome, the increasing number of published population genomics data sets offers an underexploited opportunity to study microbial profiles from the host shotgun sequencing data. Here, we use sequence data originally generated from killer whale Orcinus orca skin biopsies for population genomics, to characterize the skin microbiome and investigate how host social and geographical factors influence the microbial community composition. Having identified 845 microbial taxa from 2.4 million reads that did not map to the killer whale reference genome, we found that both ecotypic and geographical factors influence community composition of killer whale skin microbiomes. Furthermore, we uncovered key taxa that drive the microbiome community composition and showed that they are embedded in unique networks, one of which is tentatively linked to diatom presence and poor skin condition. Community composition differed between Antarctic killer whales with and without diatom coverage, suggesting that the previously reported episodic migrations of Antarctic killer whales to warmer waters associated with skin turnover may control the effects of potentially pathogenic bacteria such as Tenacibaculum dicentrarchi. Our work demonstrates the feasibility of microbiome studies from host shotgun sequencing data and highlights the importance of metagenomics in understanding the relationship between host and microbial ecology.


Assuntos
Metagenômica , Microbiota/genética , Pele/microbiologia , Orca/microbiologia , Animais , Regiões Antárticas , Diatomáceas/genética , Geografia , Orca/parasitologia
17.
Ecol Evol ; 8(18): 9241-9258, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30377497

RESUMO

The functioning of marine protected areas (MPAs) designated for marine megafauna has been criticized due to the high mobility and dispersal potential of these taxa. However, dispersal within a network of small MPAs can be beneficial as connectivity can result in increased effective population size, maintain genetic diversity, and increase robustness to ecological and environmental changes making populations less susceptible to stochastic genetic and demographic effects (i.e., Allee effect). Here, we use both genetic and photo-identification methods to quantify gene flow and demographic dispersal between MPAs of a highly mobile marine mammal, the bottlenose dolphin Tursiops truncatus. We identify three populations in the waters of western Ireland, two of which have largely nonoverlapping core coastal home ranges and are each strongly spatially associated with specific MPAs. We find high site fidelity of individuals within each of these two coastal populations to their respective MPA. We also find low levels of demographic dispersal between the populations, but it remains unclear whether any new gametes are exchanged between populations through these migrants (genetic dispersal). The population sampled in the Shannon Estuary has a low estimated effective population size and appears to be genetically isolated. The second coastal population, sampled outside of the Shannon, may be demographically and genetically connected to other coastal subpopulations around the coastal waters of the UK. We therefore recommend that the methods applied here should be used on a broader geographically sampled dataset to better assess this connectivity.

18.
Mol Ecol ; 27(11): 2604-2619, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29675902

RESUMO

Mitochondrial DNA has been heavily utilized in phylogeography studies for several decades. However, underlying patterns of demography and phylogeography may be misrepresented due to coalescence stochasticity, selection, variation in mutation rates and cultural hitchhiking (linkage of genetic variation to culturally-transmitted traits affecting fitness). Cultural hitchhiking has been suggested as an explanation for low genetic diversity in species with strong social structures, counteracting even high mobility, abundance and limited barriers to dispersal. One such species is the sperm whale, which shows very limited phylogeographic structure and low mtDNA diversity despite a worldwide distribution and large population. Here, we use analyses of 175 globally distributed mitogenomes and three nuclear genomes to evaluate hypotheses of a population bottleneck/expansion vs. a selective sweep due to cultural hitchhiking or selection on mtDNA as the mechanism contributing to low worldwide mitochondrial diversity in sperm whales. In contrast to mtDNA control region (CR) data, mitogenome haplotypes are largely ocean-specific, with only one of 80 shared between the Atlantic and Pacific. Demographic analyses of nuclear genomes suggest low mtDNA diversity is consistent with a global reduction in population size that ended approximately 125,000 years ago, correlated with the Eemian interglacial. Phylogeographic analysis suggests that extant sperm whales descend from maternal lineages endemic to the Pacific during the period of reduced abundance and have subsequently colonized the Atlantic several times. Results highlight the apparent impact of past climate change, and suggest selection and hitchhiking are not the sole processes responsible for low mtDNA diversity in this highly social species.


Assuntos
Núcleo Celular/genética , DNA Mitocondrial/genética , Variação Genética/genética , Mitocôndrias/genética , Cachalote/genética , Animais , Demografia , Genética Populacional/métodos , Haplótipos/genética , Filogenia , Filogeografia/métodos , Densidade Demográfica
19.
Trends Ecol Evol ; 33(2): 85-95, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29198471

RESUMO

Sympatric speciation has been of key interest to biologists investigating how natural and sexual selection drive speciation without the confounding variable of geographic isolation. The advent of the genomic era has provided a more nuanced and quantitative understanding of the different and often complex modes of speciation by which sympatric sister taxa arose, and a reassessment of some of the most compelling empirical case studies of sympatric speciation. However, I argue that genomic studies based on contemporary populations may never be able to provide unequivocal evidence of true primary sympatric speciation, and there is a need to incorporate palaeogenomic studies into this field. This inability to robustly distinguish cases of primary and secondary 'divergence with gene flow' may be inconsequential, as both are useful for understanding the role of large effect barrier loci in the progression from localised genic isolation to genome-wide reproductive isolation. I argue that they can be of equivalent interest due to shared underlying mechanisms driving divergence and potentially leaving similar patterns of coalescence.


Assuntos
Fluxo Gênico , Especiação Genética , Isolamento Reprodutivo , Simpatria , Animais , Genômica , Invertebrados/genética , Plantas/genética , Vertebrados/genética
20.
Methods Mol Biol ; 1712: 113-144, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29224072

RESUMO

Population genetic studies of non-model organisms often rely on initial ascertainment of genetic markers from a single individual or a small pool of individuals. This initial screening has been a significant barrier to beginning population studies on non-model organisms (Aitken et al., Mol Ecol 13:1423-1431, 2004; Morin et al., Trends Ecol Evol 19:208-216, 2004). As genomic data become increasingly available for non-model species, SNP ascertainment from across the genome can be performed directly from published genome contigs and short-read archive data. Alternatively, low to medium genome coverage from shotgun NGS library sequencing of single or pooled samples, or from reduced-representation libraries (e.g., capture enrichment; see Ref. "Hancock-Hanser et al., Mol Ecol Resour 13:254-268, 2013") can produce sufficient new data for SNP discovery with limited investment. We describe protocols for assembly of short read data to reference or related species genome contig sequences, followed by SNP discovery and filtering to obtain an optimal set of SNPs for population genotyping using a variety of downstream high-throughput genotyping methods.


Assuntos
Genoma/genética , Reação em Cadeia da Polimerase Multiplex/métodos , Polimorfismo de Nucleotídeo Único/genética , Análise de Célula Única/métodos , Animais , Mapeamento de Sequências Contíguas , DNA Bacteriano , Marcadores Genéticos , Biblioteca Genômica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Alinhamento de Sequência , Software , Estatística como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...