Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 1170, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446745

RESUMO

Novel hybrid organic-inorganic nanostructures fabricated to utilize non-radiative resonant energy transfer mechanism are considered to be extremely attractive for a variety of light emitters for down converting of ultaviolet light and for photovoltaic applications since they can be much more efficient compared to devices grown with common design. Organic-inorganic hybrid structures based on green polyfluorene (F8BT) and GaN (0001) nanorods grown by magnetron sputtering on Si (111) substrates are studied. In such nanorods, stacking faults can form periodic polymorphic quantum wells characterized by bright luminescence. In difference to GaN exciton emission, the recombination rate for the stacking fault related emission increases in the presence of polyfluorene film, which can be understood in terms of Förster interaction mechanism. From comparison of dynamic properties of the stacking fault related luminescence in the hybrid structures and in the bare GaN nanorods, the pumping efficiency of non-radiative resonant energy transfer in hybrids was estimated to be as high as 35% at low temperatures.

2.
Sci Rep ; 5: 7889, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25601650

RESUMO

Hybrid samples based on ZnO colloidal nanocrystals (NCs) deposited on AlGaN/GaN quantum well (QW) structures with different top barrier thickness d = 3, 6 and 9 nm are studied by time-resolved photoluminescence. Thermal behavior of the QW exciton lifetime in the hybrids and in the bare QW structures has been compared and it has been found that the QW exciton recombination rate increases in the hybrid having d = 3 nm and decreases in the hybrid with d = 6 nm, while no change has been observed for the structure with d = 9 nm. It is suggested that non-radiative resonance energy transfer from the QW excitons to the ZnO NCs and a variation of the surface potential can both influence the QW exciton lifetime in the hybrids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...