Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Protist ; 168(5): 612-635, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29028580

RESUMO

The green picoalgal genus Micromonas is broadly distributed in estuaries, coastal marine habitats and open oceans, from the equator to the poles. Phylogenetic, ecological and genomic analyses of culture strains and natural populations have suggested that this cosmopolitan genus is composed of several cryptic species corresponding to genetic lineages. We performed a detailed analysis of variations in morphology, pigment content, and sequences of the nuclear-encoded small-subunit rRNA gene and the second internal transcribed spacer (ITS2) from strains isolated worldwide. A new morphological feature of the genus, the presence of tip hairs at the extremity of the hair point, was discovered and subtle differences in hair point length were detected between clades. Clear non-homoplasious synapomorphies were identified in the small-subunit rRNA gene and ITS2 spacer sequences of five genetic lineages. These findings lead us to provide emended descriptions of the genus Micromonas, of the type species M. pusilla, and of the recently described species M. commoda, as well as to describe 2 new species, M. bravo and M. polaris. By clarifying the status of the genetic lineages identified within Micromonas, these formal descriptions will facilitate further interpretations of large-scale analyses investigating ecological trends in time and space for this widespread picoplankter.


Assuntos
Clorófitas/classificação , Clorófitas/genética , Genoma , Filogenia , Sequência de Bases , Clorófitas/citologia , Pigmentos Biológicos/análise , RNA de Algas/genética , RNA Ribossômico , Alinhamento de Sequência , Especificidade da Espécie
2.
BMC Evol Biol ; 14: 59, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24669847

RESUMO

BACKGROUND: Numerous studies have investigated cospeciation (or cophylogeny) in various host-symbiont systems, and different patterns were inferred, from strict cospeciation where symbiont phylogeny mirrors host phylogeny, to complete absence of correspondence between trees. The degree of cospeciation is generally linked to the level of host specificity in the symbiont species and the opportunity they have to switch hosts. In this study, we investigated cophylogeny for the first time in a microalgae-virus association in the open sea, where symbionts are believed to be highly host-specific but have wide opportunities to switch hosts. We studied prasinovirus-Mamiellales associations using 51 different viral strains infecting 22 host strains, selected from the characterisation and experimental testing of the specificities of 313 virus strains on 26 host strains. RESULTS: All virus strains were restricted to their host genus, and most were species-specific, but some of them were able to infect different host species within a genus. Phylogenetic trees were reconstructed for viruses and their hosts, and their congruence was assessed based on these trees and the specificity data using different cophylogenetic methods, a topology-based approach, Jane, and a global congruence method, ParaFit. We found significant congruence between virus and host trees, but with a putatively complex evolutionary history. CONCLUSIONS: Mechanisms other than true cospeciation, such as host-switching, might explain a part of the data. It has been observed in a previous study on the same taxa that the genomic divergence between host pairs is larger than between their viruses. It implies that if cospeciation predominates in this algae-virus system, this would support the hypothesis that prasinoviruses evolve more slowly than their microalgal hosts, whereas host switching would imply that these viruses speciated more recently than the divergence of their host genera.


Assuntos
Filogenia , Fitoplâncton/genética , Vírus/genética , DNA Viral/genética , Especificidade de Hospedeiro
3.
Science ; 324(5924): 268-72, 2009 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-19359590

RESUMO

Picoeukaryotes are a taxonomically diverse group of organisms less than 2 micrometers in diameter. Photosynthetic marine picoeukaryotes in the genus Micromonas thrive in ecosystems ranging from tropical to polar and could serve as sentinel organisms for biogeochemical fluxes of modern oceans during climate change. These broadly distributed primary producers belong to an anciently diverged sister clade to land plants. Although Micromonas isolates have high 18S ribosomal RNA gene identity, we found that genomes from two isolates shared only 90% of their predicted genes. Their independent evolutionary paths were emphasized by distinct riboswitch arrangements as well as the discovery of intronic repeat elements in one isolate, and in metagenomic data, but not in other genomes. Divergence appears to have been facilitated by selection and acquisition processes that actively shape the repertoire of genes that are mutually exclusive between the two isolates differently than the core genes. Analyses of the Micromonas genomes offer valuable insights into ecological differentiation and the dynamic nature of early plant evolution.


Assuntos
Evolução Biológica , Clorófitas/genética , Genoma , Plantas/genética , Adaptação Fisiológica , Clorófitas/classificação , Clorófitas/citologia , Clorófitas/fisiologia , Elementos de DNA Transponíveis , Ecossistema , Regulação da Expressão Gênica , Genes , Variação Genética , Íntrons , Meiose/genética , Dados de Sequência Molecular , Oceanos e Mares , Fotossíntese/genética , Filogenia , Fitoplâncton/classificação , Fitoplâncton/genética , RNA não Traduzido , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA , Fatores de Transcrição/genética
4.
C R Biol ; 332(2-3): 159-70, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19281949

RESUMO

Marine phytoplankton organisms account for more than 45% of the photosynthetic net primary production on Earth. They are distributed across many of the major clades of the tree of life and include prokaryotes, and eukaryotes that acquired photosynthesis through the process of endosymbiosis. If the number of extant described species is relatively low compared to the diversity of the terrestrial plants, recent insights into the genetic diversity of natural assemblages have revealed a large unsuspected diversity at different taxonomic levels. Wide infra-specific diversity is also being discovered in many widespread and well known morphological species. This review summarizes data obtained in the fields of ecology, evolutionary biology, physiology and genomics that have improved our understanding of the biodiversity and evolution of marine phytoplankton.


Assuntos
Biodiversidade , Evolução Biológica , Fitoplâncton/fisiologia , Animais , Biologia Marinha , Oceanos e Mares
5.
Environ Microbiol ; 10(9): 2433-43, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18537812

RESUMO

Very few studies have analysed the niches of pelagic protist in details. This is because for most protists, both an accurate species definition and methods for routine detection and quantification of cells are lacking. The morphospecies Micromonas pusilla, a marine unicellular green alga, is the most ubiquitous and cosmopolitan picoeukaryote described to date. This species comprises several independent genetic lineages or clades, which are not currently distinguishable based on comparison of their morphology or biogeographical distribution. Molecular probes were used to detect and quantify the genetic clades of M. pusilla in samples from temperate, polar and tropical environments in order to assess potential ecological niche partitioning. The three clades were detected in all biogeographical regions studied and were commonly found in sympatry. Cell abundances recorded for clades A and B were high, especially at coastal stations. Clade C, when detected, was always at low abundances and is suggested to be a low-light clade. Shifts in the contribution of clades to total M. pusilla abundance were observed along environmental gradients, both at local and basin-wide scales. This suggests that the phylogenetic clades occupy specific niches and confirms the existence of cryptic species within the morphospecies M. pusilla. Parameters which can precisely explain the distribution of these cryptic species remain to be elucidated.


Assuntos
Biodiversidade , Clorófitas/genética , Sondas de DNA , DNA de Algas/genética , Filogenia , Biomassa , DNA Ribossômico/genética , Ecologia , Evolução Molecular , Variação Genética , Geografia , Hibridização in Situ Fluorescente , Oceanos e Mares , RNA Ribossômico 18S/genética , Estações do Ano , Sensibilidade e Especificidade , Especificidade da Espécie , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...