Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
2.
Life (Basel) ; 13(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38137887

RESUMO

Helminth parasites cause debilitating-sometimes fatal-diseases in humans and animals. Despite their impact on global health, mechanisms underlying host-parasite interactions are still poorly understood. One such mechanism involves the exchange of extracellular vesicles (EVs), which are membrane-enclosed subcellular nanoparticles. To date, EV secretion has been studied in helminth parasites, including EV protein content. However, information is highly heterogeneous, since it was generated in multiple species, using varied protocols for EV isolation and data analysis. Here, we compared the protein cargo of helminth EVs to identify common markers for each taxon. For this, we integrated published proteomic data and performed a comparative analysis through an orthology approach. Overall, only three proteins were common in the EVs of the seven analyzed species. Additionally, varied repertoires of proteins with moonlighting activity, vaccine antigens, canonical and non-canonical proteins related to EV biogenesis, taxon-specific proteins of unknown function and RNA-binding proteins were observed in platyhelminth and nematode EVs. Despite the lack of consensus on EV isolation protocols and protein annotation, several proteins were shown to be consistently detected in EV preparations from organisms at different taxa levels, providing a starting point for a selective biochemical characterization.

3.
Parasitol Res ; 121(4): 1117-1129, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35169885

RESUMO

Infections with parasitic helminths cause severe debilitating and sometimes lethal diseases in humans and domestic animals on a global scale. Unable to synthesize de novo their own fatty acids and sterols, helminth parasites (nematodes, trematodes, cestodes) rely on their hosts for their supply. These organisms produce and secrete a wide range of lipid binding proteins that are, in most cases, structurally different from the ones found in their hosts, placing them as possible novel therapeutic targets. In this sense, a lot of effort has been made towards the structure determination of these proteins, but their precise function is still unknown. In this review, we aim to present the current knowledge on the functions of LBPs present in parasitic helminths as well as novel members of this highly heterogeneous group of proteins.


Assuntos
Helmintos , Nematoides , Parasitos , Trematódeos , Animais , Lipídeos
4.
J Comput Aided Mol Des ; 34(12): 1275-1288, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33067653

RESUMO

Fatty acid binding proteins (FABPs) are small intracellular proteins that reversibly bind fatty acids and other hydrophobic ligands. In cestodes, due to their inability to synthesise fatty acids and cholesterol de novo, FABPs, together with other lipid binding proteins, have been proposed as essential, involved in the trafficking and delivery of such lipophilic metabolites. Pharmacological agents that modify specific parasite FABP function may provide control of lipid signalling pathways, inflammatory responses and metabolic regulation that could be of crucial importance for the parasite development and survival. Echinococcus multilocularis and Echinococcus granulosus are, respectively, the causative agents of alveolar and cystic echinococcosis (or hydatidosis). These diseases are included in the World Health Organization's list of priority neglected tropical diseases. Here, we explore the potential of FABPs from cestodes as drug targets. To this end, we have applied a target repurposing approach to identify novel inhibitors of Echinococcus spp. FABPs. An ensemble of computational models was developed and applied in a virtual screening campaign of DrugBank library. 21 hits belonging to the applicability domain of the ensemble models were identified, and 3 of the hits were assayed against purified E. multilocularis FABP, experimentally confirming the model's predictions. Noteworthy, this is to our best knowledge the first report on isolation and purification of such four FABP, for which initial structural and functional characterization is reported here.


Assuntos
Simulação por Computador , Reposicionamento de Medicamentos/métodos , Equinococose/tratamento farmacológico , Echinococcus multilocularis/efeitos dos fármacos , Proteínas de Ligação a Ácido Graxo/antagonistas & inibidores , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/química , Animais , Anti-Helmínticos/farmacologia , Equinococose/parasitologia , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Helminto/antagonistas & inibidores
5.
Parasitol Res ; 119(4): 1401-1408, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32130486

RESUMO

Fatty acid-binding proteins (FABPs) are small intracellular proteins that reversibly bind fatty acids and other hydrophobic ligands. In cestodes, due to their inability to synthesise fatty acids de novo, FABPs have been proposed as essential proteins, and thus, as possible drug targets and/or carriers against these parasites. We performed data mining in Echinococcus multilocularis and Echinococcus granulosus genomes in order to test whether this family of proteins is more complex than previously reported. By exploring the genomes of E. multilocularis and E. granulosus, six genes coding for FABPs were found in each organism. In the case of E. granulosus, all of them have different coding sequences, whereas in E. multilocularis, two of the genes code for the same protein. Remarkably, one of the genes (in both cestodes) encodes a FABP with a C-terminal extension unusual for this family of proteins. The newly described genes present variations in their structure in comparison with previously described FABP genes in Echinococcus spp. The coding sequences for E. multilocularis were validated by cloning and sequencing. Moreover, differential expression patterns of FABPs were observed at different stages of the life cycle of E. multilocularis by exploring transcriptomic data from several sources. In summary, FABP family in cestodes is far more complex than previously thought and includes new members that seem to be only present in flatworms.


Assuntos
Echinococcus granulosus/genética , Echinococcus multilocularis/genética , Proteínas de Ligação a Ácido Graxo/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA de Protozoário/genética , Ácidos Graxos/metabolismo , Genoma de Protozoário/genética , Análise de Sequência , Análise de Sequência de DNA , Transcriptoma/genética
6.
Biosci Rep ; 39(7)2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31273060

RESUMO

Intracellular lipid-binding proteins (iLBPs) of the fatty acid-binding protein (FABP) family of animals transport, mainly fatty acids or retinoids, are confined to the cytosol and have highly similar 3D structures. In contrast, nematodes possess fatty acid-binding proteins (nemFABPs) that are secreted into the perivitelline fluid surrounding their developing embryos. We report structures of As-p18, a nemFABP of the large intestinal roundworm Ascaris suum, with ligand bound, determined using X-ray crystallography and nuclear magnetic resonance spectroscopy. In common with other FABPs, As-p18 comprises a ten ß-strand barrel capped by two short α-helices, with the carboxylate head group of oleate tethered in the interior of the protein. However, As-p18 exhibits two distinctive longer loops amongst ß-strands not previously seen in a FABP. One of these is adjacent to the presumed ligand entry portal, so it may help to target the protein for efficient loading or unloading of ligand. The second, larger loop is at the opposite end of the molecule and has no equivalent in any iLBP structure yet determined. As-p18 preferentially binds a single 18-carbon fatty acid ligand in its central cavity but in an orientation that differs from iLBPs. The unusual structural features of nemFABPs may relate to resourcing of developing embryos of nematodes.


Assuntos
Ascaris suum/química , Proteínas de Ligação a Ácido Graxo/química , Proteínas de Helminto/química , Óvulo/química , Animais , Ascaris suum/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Helminto/metabolismo , Ligantes , Óvulo/metabolismo , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína
7.
Parasit Vectors ; 10(1): 446, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28954629

RESUMO

BACKGROUND: The giant kidney worm, Dioctophyme renale, is a debilitating and potentially lethal parasite that inhabits and destroys, typically host's right kidney, and may also be found in ectopic sites. It is circumglobally distributed, mainly in dogs, and is increasingly regarded as a threat to other domestic animals and humans. There is little information on the parasite's true incidence, or immune responses to it, and none on its biochemistry and molecular biology. RESULTS: We characterised the soluble proteins of body wall, intestine, gonads and pseudocelomic fluid (PCF) of adult parasites. Two proteins, P17 and P44, dominate the PCF of both male and females. P17 is of 16,622 Da by mass spectrometry, and accounts for the intense red colour of the adult parasites. It may function to carry or scavenge oxygen and be related to the 'nemoglobins' found in other nematode clades. P44 is of 44,460 Da and was found to associate with fatty acids by thin layer chromatography. Using environment-sensitive fluorescent lipid probes, P44 proved to be a hydrophobic ligand-binding protein with a binding site that is highly apolar, and competitive displacement experiments showed that P44 binds fatty acids. It may therefore have a role in distributing lipids within the parasites and, if also secreted, might influence local inflammatory and tissue responses. N-terminal and internal peptide amino-acid sequences of P44 indicate a relationship with a cysteine- and histidine-rich protein of unknown function from Trichinella spiralis. CONCLUSIONS: The dominant proteins of D. renale PCF are, like those of large ascaridids, likely to be involved in lipid and oxygen handling, although there is evidence of strong divergence between the two groups.


Assuntos
Dioctophymatoidea/metabolismo , Infecções por Enoplida/veterinária , Proteínas de Helminto/química , Sequência de Aminoácidos , Animais , Cromatografia em Camada Fina , Dioctophymatoidea/química , Dioctophymatoidea/genética , Doenças do Cão/parasitologia , Cães , Infecções por Enoplida/parasitologia , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Feminino , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Rim , Masculino , Espectrometria de Massas , Dados de Sequência Molecular , Peso Molecular
8.
BMC Genomics ; 18(1): 223, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28274201

RESUMO

BACKGROUND: Microalgal triglyceride (TAG) synthesis has attracted considerable attention. Particular emphasis has been put towards characterizing the algal homologs of the canonical rate-limiting enzymes, diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT). Less work has been done to analyze homologs from a phylogenetic perspective. In this work, we used HMMER iterative profiling and phylogenetic and functional analyses to determine the number and sequence characteristics of algal DGAT and PDAT, as well as related sequences that constitute their corresponding superfamilies. We included most algae with available genomes, as well as representative eukaryotic and prokaryotic species. RESULTS: Amongst our main findings, we identified a novel clade of DGAT1-like proteins exclusive to red algae and glaucophyta and a previously uncharacterized subclade of DGAT2 proteins with an unusual number of transmembrane segments. Our analysis also revealed the existence of a novel DGAT exclusive to green algae with moderate similarity to plant soluble DGAT3. The DGAT3 clade shares a most recent ancestor with a group of uncharacterized proteins from cyanobacteria. Subcellular targeting prediction suggests that most green algal DGAT3 proteins are imported to the chloroplast, evidencing that the green algal chloroplast might have a soluble pathway for the de novo synthesis of TAGs. Heterologous expression of C. reinhardtii DGAT3 produces an increase in the accumulation of TAG, as evidenced by thin layer chromatography. CONCLUSIONS: Our analysis contributes to advance in the knowledge of complex superfamilies involved in lipid metabolism and provides clues to possible enzymatic players of chloroplast TAG synthesis.


Assuntos
Clorófitas/metabolismo , Cloroplastos/metabolismo , Diacilglicerol O-Aciltransferase/metabolismo , Redes e Vias Metabólicas , Triglicerídeos/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Clorófitas/classificação , Clorófitas/genética , Cloroplastos/genética , Biologia Computacional/métodos , Simulação por Computador , Sequência Conservada , Diacilglicerol O-Aciltransferase/química , Diacilglicerol O-Aciltransferase/genética , Evolução Molecular , Ferredoxinas/química , Ferredoxinas/genética , Ferredoxinas/metabolismo , Redes e Vias Metabólicas/ética , Filogenia , Matrizes de Pontuação de Posição Específica , Triglicerídeos/biossíntese
9.
Biochem J ; 471(3): 403-14, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26318523

RESUMO

Fatty acid and retinol-binding proteins (FARs) comprise a family of unusual α-helix rich lipid-binding proteins found exclusively in nematodes. They are secreted into host tissues by parasites of plants, animals and humans. The structure of a FAR protein from the free-living nematode Caenorhabditis elegans is available, but this protein [C. elegans FAR-7 (Ce-FAR-7)] is from a subfamily of FARs that does not appear to be important at the host/parasite interface. We have therefore examined [Necator americanus FAR-1 (Na-FAR-1)] from the blood-feeding intestinal parasite of humans, N. americanus. The 3D structure of Na-FAR-1 in its ligand-free and ligand-bound forms, determined by NMR (nuclear magnetic resonance) spectroscopy and X-ray crystallography respectively, reveals an α-helical fold similar to Ce-FAR-7, but Na-FAR-1 possesses a larger and more complex internal ligand-binding cavity and an additional C-terminal α-helix. Titration of apo-Na-FAR-1 with oleic acid, analysed by NMR chemical shift perturbation, reveals that at least four distinct protein-ligand complexes can be formed. Na-FAR-1 and possibly other FARs may have a wider repertoire for hydrophobic ligand binding, as confirmed in the present study by our finding that a range of neutral and polar lipids co-purify with the bacterially expressed recombinant protein. Finally, we show by immunohistochemistry that Na-FAR-1 is present in adult worms with a tissue distribution indicative of possible roles in nutrient acquisition by the parasite and in reproduction in the male.


Assuntos
Interações Hospedeiro-Parasita , Necator americanus/metabolismo , Necatoríase/metabolismo , Proteínas de Ligação ao Retinol/metabolismo , Animais , Sítios de Ligação , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/patogenicidade , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Ligantes , Necator americanus/química , Necator americanus/patogenicidade , Necatoríase/parasitologia , Reprodução , Proteínas de Ligação ao Retinol/química
10.
PLoS Negl Trop Dis ; 9(3): e0003552, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25768648

RESUMO

BACKGROUND: The hydatid disease parasite Echinococcus granulosus has a restricted lipid metabolism, and needs to harvest essential lipids from the host. Antigen B (EgAgB), an abundant lipoprotein of the larval stage (hydatid cyst), is thought to be important in lipid storage and transport. It contains a wide variety of lipid classes, from highly hydrophobic compounds to phospholipids. Its protein component belongs to the cestode-specific Hydrophobic Ligand Binding Protein family, which includes five 8-kDa isoforms encoded by a multigene family (EgAgB1-EgAgB5). How lipid and protein components are assembled into EgAgB particles remains unknown. EgAgB apolipoproteins self-associate into large oligomers, but the functional contribution of lipids to oligomerization is uncertain. Furthermore, binding of fatty acids to some EgAgB subunits has been reported, but their ability to bind other lipids and transfer them to acceptor membranes has not been studied. METHODOLOGY/PRINCIPAL FINDINGS: Lipid-free EgAgB subunits obtained by reverse-phase HPLC were used to analyse their oligomerization, ligand binding and membrane interaction properties. Size exclusion chromatography and cross-linking experiments showed that EgAgB8/2 and EgAgB8/3 can self-associate, suggesting that lipids are not required for oligomerization. Furthermore, using fluorescent probes, both subunits were found to bind fatty acids, but not cholesterol analogues. Analysis of fatty acid transfer to phospholipid vesicles demonstrated that EgAgB8/2 and EgAgB8/3 are potentially capable of transferring fatty acids to membranes, and that the efficiency of transfer is dependent on the surface charge of the vesicles. CONCLUSIONS/SIGNIFICANCE: We show that EgAgB apolipoproteins can oligomerize in the absence of lipids, and can bind and transfer fatty acids to phospholipid membranes. Since imported fatty acids are essential for Echinococcus granulosus, these findings provide a mechanism whereby EgAgB could engage in lipid acquisition and/or transport between parasite tissues. These results may therefore indicate vulnerabilities open to targeting by new types of drugs for hydatidosis therapy.


Assuntos
Lipoproteínas/química , Sequência de Aminoácidos , Animais , Equinococose/parasitologia , Ácidos Graxos/metabolismo , Humanos , Lipídeos , Lipoproteínas/metabolismo , Membranas/metabolismo , Dados de Sequência Molecular , Fosfolipídeos/metabolismo , Polimerização , Subunidades Proteicas
11.
Artigo em Inglês | MEDLINE | ID: mdl-25282399

RESUMO

In this review paper we aim at presenting the current knowledge on structural aspects of soluble lipid binding proteins (LBPs) found in parasitic helminths and to discuss their potential role as novel drug targets. Helminth parasites produce and secrete a great variety of LBPs that may participate in the acquisition of nutrients from their host, such as fatty acids and cholesterol. It is also postulated that LBPs might interfere in the regulation of the host׳s immune response by sequestering lipidic intermediates or delivering bioactive lipids. A detailed comprehension of the structure of these proteins, as well as their interactions with ligands and membranes, is important to understand host-parasite relationships that they may mediate. This information could also contribute to determining the role that these proteins may play in the biology of parasitic helminths and how they modulate the immune systems of their hosts, and also towards the development of new therapeutics and prevention of the diseases caused by these highly pathogenic parasites.


Assuntos
Proteínas de Ligação a Ácido Graxo/metabolismo , Helmintos/fisiologia , Animais , Proteínas de Ligação a Ácido Graxo/química , Helmintíase/prevenção & controle , Helmintos/parasitologia , Interações Hospedeiro-Parasita , Humanos , Modelos Moleculares
12.
Biochim Biophys Acta ; 1811(7-8): 452-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21539932

RESUMO

Intestinal and liver fatty acid binding proteins (IFABP and LFABP, respectively) are cytosolic soluble proteins with the capacity to bind and transport hydrophobic ligands between different sub-cellular compartments. Their functions are still not clear but they are supposed to be involved in lipid trafficking and metabolism, cell growth, and regulation of several other processes, like cell differentiation. Here we investigated the interaction of these proteins with different models of phospholipid membrane vesicles in order to achieve further insight into their specificity within the enterocyte. A combination of biophysical and biochemical techniques allowed us to determine affinities of these proteins to membranes, the way phospholipid composition and vesicle size and curvature modulate such interaction, as well as the effect of protein binding on the integrity of the membrane structure. We demonstrate here that, besides their apparently opposite ligand transfer mechanisms, both LFABP and IFABP are able to interact with phospholipid membranes, but the factors that modulate such interactions are different for each protein, further implying different roles for IFABP and LFABP in the intracellular context. These results contribute to the proposed central role of intestinal FABPs in the lipid traffic within enterocytes as well as in the regulation of more complex cellular processes.


Assuntos
Enterócitos/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Lipídeos de Membrana/metabolismo , Animais , Ligação Competitiva , Fenômenos Biofísicos , Citocromos c/metabolismo , Humanos , Técnicas In Vitro , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Fosfolipídeos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Lipossomas Unilamelares/metabolismo
13.
Protein Sci ; 18(12): 2592-602, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19844951

RESUMO

A lingering issue in the area of protein engineering is the optimal design of beta motifs. In this regard, the framework provided by intestinal fatty acid binding protein (IFABP) was successfully chosen to explore the consequences on structure and function of the redesign of natural motifs. A truncated form of IFABP (Delta 98 Delta) served to illustrate the nonintuitive notion that the integrity of the beta-barrel can indeed be compromised with no effect on the ability to attain a native-like fold. This is most likely the outcome of the key role played by the preservation of essential core residues. In the search for the minimal structural determinants of this fold, Delta 98 Delta offered room for further intervention. A dissection of this protein leads to a new abridged variant, Delta 78 Delta, containing 60% of the amino acids of IFABP. Spectroscopic analyses indicate that Delta 78 Delta retains substantial beta-sheet content and preserves tertiary interactions, displaying cooperative unfolding and binding activity. Most strikingly, this construct adopts a remarkably stable dimeric structure in solution. This phenomenon takes advantage of the inherent structural plasticity of this motif, likely profitting from edge-to-edge interactions between beta-sheets, whereas avoiding the most commonly occurring outcome represented by aggregation.


Assuntos
Proteínas de Ligação a Ácido Graxo/química , Motivos de Aminoácidos , Animais , Dicroísmo Circular , Proteínas de Ligação a Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Multimerização Proteica , Ratos , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
14.
J Lipid Res ; 46(8): 1765-72, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15863832

RESUMO

Intestinal fatty acid binding protein (IFABP) is thought to participate in the intracellular transport of fatty acids (FAs). Fatty acid transfer from IFABP to phospholipid membranes is proposed to occur during protein-membrane collisional interactions. In this study, we analyzed the participation of electrostatic and hydrophobic interactions in the collisional mechanism of FA transfer from IFABP to membranes. Using a fluorescence resonance energy transfer assay, we examined the rate and mechanism of transfer of anthroyloxy-fatty acid analogs a) from IFABP to phospholipid membranes of different composition; b) from chemically modified IFABPs, in which the acetylation of surface lysine residues eliminated positive surface charges; and c) as a function of ionic strength. The results show clearly that negative charges on the membrane surface and positive charges on the protein surface are important for establishing the "collisional complex", during which fatty acid transfer occurs. In addition, changes in the hydrophobicity of the protein surface, as well as the hydrophobic volume of the acceptor vesicles, also influenced the rate of fatty acid transfer. Thus, ionic interactions between IFABP and membranes appear to play a primary role in the process of fatty acid transfer to membranes, and hydrophobic interactions can also modulate the rates of ligand transfer.


Assuntos
Membrana Celular/metabolismo , Ácidos Graxos/metabolismo , Animais , Transporte Biológico , Transferência Ressonante de Energia de Fluorescência , Interações Hidrofóbicas e Hidrofílicas , Cinética , Concentração Osmolar , Ratos , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...