Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209392

RESUMO

An aerial humidity-induced solid-phase hydrolytic transformation of the [Zn(NH3)4]MoO4@2H2O (compound 1@2H2O) with the formation of [(NH4)xH(1-x)Zn(OH)(MoO4)]n (x = 0.92-0.94) coordination polymer (formally NH4Zn(OH)MoO4, compound 2) is described. Based on the isostructural relationship, the powder XRD indicates that the crystal lattice of compound 1@2H2O contains a hydrogen-bonded network of tetraamminezinc (2+) and molybdate (2-) ions, and there are cavities (O4N4(µ-H12) cube) occupied by the two water molecules, which stabilize the crystal structure. Several observations indicate that the water molecules have no fixed positions in the lattice voids; instead, the cavity provides a neighborhood similar to those in clathrates. The @ symbol in the notation is intended to emphasize that the H2O in this compound is enclathrated rather than being water of crystallization. Yet, signs of temperature-dependent dynamic interactions with the wall of the cages can be detected, and 1@2H2O easily releases its water content even on standing and yields compound 2. Surprisingly, hydrolysis products of 1 were observed even in the absence of aerial humidity, which suggests a unique solid-phase quasi-intramolecular hydrolysis. A mechanism involving successive substitution of the ammonia ligands by water molecules and ammonia release is proposed. An ESR study of the Cu-doped compound 2 (2#dotCu) showed that this complex consists of two different Cu2+(Zn2+) environments in the polymeric structure. Thermal decomposition of compounds 1 and 2 results in ZnMoO4 with similar specific surface area and morphology. The ZnMoO4 samples prepared from compounds 1 and 2 and compound 2 in itself are active photocatalysts in the degradation of Congo Red dye. IR, Raman, and UV studies on compounds 1@2H2O and 2 are discussed in detail.

2.
ACS Omega ; 6(2): 1523-1533, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33490812

RESUMO

Copper manganese oxides (CMO) with CuMn2O4 composition are well-known catalysts, which are widely used for the oxidative removal of dangerous chemicals, e.g., enhancing the CO to CO2 conversion. Their catalytic activity is the highest, close to those of the pre-crystalline and amorphous states. Here we show an easy way to prepare a stable CMO material at the borderline of the amorphous and crystalline state (BAC-CMO) at low temperatures (<100 °C) followed annealing at 300 °C and point out its excellent catalytic activity in CO oxidation reactions. We demonstrate that the temperature-controlled decomposition of [Cu(NH3)4](MnO4)2 in CHCl3 and CCl4 at 61 and 77 °C, respectively, gives rise to the formation of amorphous CMO and NH4NO3, which greatly influences the composition as well as the Cu valence state of the annealed CMOs. Washing with water and annealing at 300 °C result in a BAC-CMO material, whereas the direct annealing of the as-prepared product at 300 °C gives rise to crystalline CuMn2O4 (sCMO, 15-40 nm) and ((Cu,Mn)2O3, bCMO, 35-40 nm) mixture. The annealing temperature influences both the quantity and crystallite size of sCMO and bCMO products. In 0.5% CO/0.5% O2/He mixture the best CO to CO2 conversion rates were achieved at 200 °C with the BAC-CMO sample (0.011 mol CO2/(m2 h)) prepared in CCl4. The activity of this BAC-CMO at 125 °C decreases to half of its original value within 3 h and this activity is almost unchanged during another 20 h. The BAC-CMO catalyst can be regenerated without any loss in its catalytic activity, which provides the possibility for its long-term industrial application.

3.
RSC Adv ; 11(6): 3713-3724, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35424281

RESUMO

Two polymorphs and a solvatomorph of a new dimethylammonium polytungstate-decakis(dimethylammonium) dihydrogendodecatungstate, (Me2NH2)10(W12O42)·nH2O (n = 10 or 11)-have been synthesized. Their structures were characterized by single-crystal X-ray diffraction and solid-phase NMR methods. The shape of the dodecatungstate anions is essentially the same in all three structures, their interaction with the cations and water of crystallization, however, is remarkably variable, because the latter forms different hydrogen-bonded networks, and provides a highly versatile matrix. Accordingly, the N-H⋯O and C-H⋯O hydrogen bonds are positioned in each crystal lattice in a variety of environments, characteristic to the structure, which can be distinguished by solid-state 1H-CRAMPS, 13C, 15N CP MAS and 1H-13C heteronuclear correlation NMR. Thermogravimetry of the solvatomorphs also reflect the difference and multiformity of the environment of the water molecules in the different crystal lattices. The major factors behind the variability of the matrix are the ability of ammonium cations to form two hydrogen bonds and the rigidity of the polyoxometalate anion cage. The positions of the oxygen atoms in the latter are favourable for the formation of bifurcated and trifurcated cation-anion hydrogen bonds, some which are so durable that they persist after the crystals are dissolved in water, forming ion associates even in dilute solutions. The H atom involved in furcated hydrogen bonds cannot be exchanged by deuterium when the compound is dissolved in D2O. An obvious consequence of the versatility of the matrix is the propensity of these compounds to form multiple polymorphs.

4.
RSC Adv ; 9(49): 28387-28398, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-35529631

RESUMO

Compounds containing redox active permanganate anions and complexed silver cations with reducing pyridine ligands are used not only as selective and mild oxidants in organic chemistry but as precursors for nanocatalyst synthesis in low-temperature solid-phase quasi-intramolecular redox reactions. Here we show a novel compound (4Agpy2MnO4·Agpy4MnO4) that has unique structural features including (1) four coordinated and one non-coordinated permanganate anion, (2) κ1O-permanganate coordinated Ag, (3) chain-like [Ag(py)2]+ units, (4) non-coordinated ionic permanganate ions and an [Ag(py)4]+ tetrahedra as well as (5) unsymmetrical hydrogen bonds between pyridine α-CHs and a permanganate oxygen. As a result of the oxidizing permanganate anion and reducing pyridine ligand, a highly exothermic reaction occurs at 85 °C. If the decomposition heat is absorbed by alumina or oxidation-resistant organic solvents (the solvent absorbs the heat to evaporate), the decomposition reaction proceeds smoothly and safely. During heating of the solid material, pyridine is partly oxidized into carbon dioxide and water; the solid phase decomposition end product contains mainly metallic Ag, Mn3O4 and some encapsulated carbon dioxide. Surprisingly, the enigmatic carbon-dioxide is an intercalated gas instead of the expected chemisorbed carbonate form. The title compound is proved to be a mild and efficient oxidant toward benzyl alcohols with an almost quantitative yield of benzaldehydes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...