Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Methods Mol Biol ; 2784: 113-132, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502482

RESUMO

Functional genomics and chemical screens can identify and characterize novel cellular factors regulating signaling networks and chemical tools to modulate their function for the treatment of disease. Screening methods have relied primarily on immortalized and/or transformed cancer cell lines, which can limit the generalization of results to more physiologically relevant systems. Most have also relied on immunofluorescence, or on stably expressed recombinant fluorescent proteins, to detect specific protein markers using high-content imaging readouts. In comparison, high-throughput methods to visualize and measure RNA species have been less explored. To address this, we have adapted an isothermal signal amplification chemistry for RNA FISH known as hybridization chain reaction (HCR) to an automated, high-content imaging assay format. We present a detailed protocol for this technique, which we have named high-content HCR (hcHCR). The protocol focuses on the measurement of changes in mRNA abundance at the single-cell level in human primary cells, but it can be applied to a variety of primary cell types and perturbing agents. We anticipate that hcHCR will be most suitable for low- to medium-throughput screening experiments in which changes in transcript abundance are the desired output measure.


Assuntos
Diagnóstico por Imagem , RNA , Humanos , RNA/genética , RNA Mensageiro/genética , Hibridização de Ácido Nucleico , Transdução de Sinais
2.
Cell Rep ; 43(2): 113700, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38265935

RESUMO

Elevated interleukin (IL)-1ß levels, NLRP3 inflammasome activity, and systemic inflammation are hallmarks of chronic metabolic inflammatory syndromes, but the mechanistic basis for this is unclear. Here, we show that levels of plasma IL-1ß are lower in fasting compared to fed subjects, while the lipid arachidonic acid (AA) is elevated. Lipid profiling of NLRP3-stimulated mouse macrophages shows enhanced AA production and an NLRP3-dependent eicosanoid signature. Inhibition of cyclooxygenase by nonsteroidal anti-inflammatory drugs decreases eicosanoid, but not AA, production. It also reduces both IL-1ß and IL-18 production in response to NLRP3 activation. AA inhibits NLRP3 inflammasome activity in human and mouse macrophages. Mechanistically, AA inhibits phospholipase C activity to reduce JNK1 stimulation and hence NLRP3 activity. These data show that AA is an important physiological regulator of the NLRP3 inflammasome and explains why fasting reduces systemic inflammation and also suggests a mechanism to explain how nonsteroidal anti-inflammatory drugs work.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Camundongos , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ácido Araquidônico/uso terapêutico , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Eicosanoides , Jejum
3.
Nat Commun ; 14(1): 2836, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37202395

RESUMO

One of the key events in viral encephalitis is the ability of virus to enter the central nervous system (CNS). Several encephalitic viruses, including La Crosse Virus (LACV), primarily induce encephalitis in children, but not adults. This phenomenon is also observed in LACV mouse models, where the virus gains access to the CNS of weanling animals through vascular leakage of brain microvessels, likely through brain capillary endothelial cells (BCECs). To examine age and region-specific regulatory factors of vascular leakage, we used genome-wide transcriptomics and targeted siRNA screening to identify genes whose suppression affected viral pathogenesis in BCECs. Further analysis of two of these gene products, Connexin43 (Cx43/Gja1) and EphrinA2 (Efna2), showed a substantial effect on LACV pathogenesis. Induction of Cx43 by 4-phenylbutyric acid (4-PBA) inhibited neurological disease in weanling mice, while Efna2 deficiency increased disease in adult mice. Thus, we show that Efna2 and Cx43 expressed by BCECs are key mediators of LACV-induced neuroinvasion and neurological disease.


Assuntos
Encefalite da Califórnia , Vírus La Crosse , Animais , Camundongos , Vírus La Crosse/genética , Encefalite da Califórnia/genética , Conexina 43 , Células Endoteliais , Fatores Etários
4.
Clin Cancer Res ; 29(2): 324-330, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36628536

RESUMO

PURPOSE: Viral infections are a major cause of morbidity and mortality following allogeneic hematopoietic cell transplantation (allo-HCT). In the absence of safe and effective antiviral treatments, virus-specific T cells have emerged as a promising therapeutic option. Posoleucel is a multivirus-specific T-cell therapy for off-the-shelf use against six viral infections that commonly occur in allo-HCT recipients: adenovirus, BK virus (BKV), cytomegalovirus, Epstein-Barr virus, human herpes virus-6, and JC virus. PATIENTS AND METHODS: We conducted an open-label, phase II trial to determine the feasibility and safety of posoleucel in allo-HCT recipients infected with one or more of these viruses. Infections were either unresponsive to or patients were unable to tolerate standard antiviral therapies. Fifty-eight adult and pediatric patients were enrolled and treated. RESULTS: Posoleucel was well tolerated, with no cytokine release syndrome or other infusion-related toxicities; two patients (3.4%) developed Grade 2 and one patient (1.7%) Grade 3 GvHD during the trial. The overall response rate 6 weeks after the first posoleucel infusion was 95%, with a median plasma viral load reduction of 97%. Of the 12 patients who had two or more target viral infections identified at study entry, 10 (83%) had a clinical response for all evaluable viruses. Of the 23 patients treated for refractory BKV-associated hemorrhagic cystitis, 74% had resolution of symptoms and macroscopic hematuria by 6 weeks post-infusion. CONCLUSIONS: In this open-label trial, treatment of refractory viral infections/disease in allo-HCT recipients with posoleucel was feasible, safe, and effective.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Transplante de Células-Tronco Hematopoéticas , Viroses , Adulto , Criança , Humanos , Antivirais/efeitos adversos , Terapia Baseada em Transplante de Células e Tecidos/efeitos adversos , Infecções por Vírus Epstein-Barr/terapia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Herpesvirus Humano 4 , Viroses/epidemiologia , Viroses/prevenção & controle
5.
Cell Death Differ ; 30(2): 589-604, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36624264

RESUMO

Kinase signaling in the tiered activation of inflammasomes and associated pyroptosis is a prime therapeutic target for inflammatory diseases. While MAPKs subsume pivotal roles during inflammasome priming, specifically the MAP3K7/JNK1/NLRP3 licensing axis, their involvement in successive steps of inflammasome activation is poorly defined. Using live-cell MAPK biosensors to focus on the inflammasome triggering event allowed us to identify a subsequent process of biphasic JNK activation. We find that this biphasic post-trigger JNK signaling initially facilitates the mitochondrial reactive oxygen species generation needed to support core inflammasome formation, then supports the gasdermin-mediated cell permeation required for release of active IL-1ß from human macrophages. We further identify and characterize a xanthine oxidase-ROS activated MAP3K5/JNK2 substrate licensing complex as a novel regulator of the GSDMD mobilization which precedes pyroptosis. We show that inhibitors targeting this MAP3K5 cascade alleviate morbidity in mouse models of colitis and dampen both augmented IL-1ß release and cell permeation in monocytes derived from patients with gain-of-function inflammasomopathies.


Assuntos
Inflamassomos , Piroptose , Animais , Humanos , Camundongos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Sistema de Sinalização das MAP Quinases , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/fisiologia , Transdução de Sinais
7.
Cell Rep ; 41(1): 111441, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36179680

RESUMO

Biologically active small molecules can impart modulatory effects, in some cases providing extended long-term memory. In a screen of biologically active small molecules for regulators of tumor necrosis factor (TNF) induction, we identify several compounds with the ability to induce training effects on human macrophages. Rutaecarpine shows acute and long-term modulation, enhancing lipopolysaccharide (LPS)-induced pro-inflammatory cytokine secretion and relieving LPS tolerance in human macrophages. Rutaecarpine inhibits ß-glucan-induced H3K4Me3 marks at the promoters of several pro-inflammatory cytokines, highlighting the potential of this molecule to modulate chromosomal topology. Syk kinase inhibitor (SYKi IV), another screen hit, promotes an enhanced response to LPS similar to that previously reported for ß-glucan-induced training. Macrophages trained with SYKi IV show a high degree of resistance to influenza A, multiple variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and OC43 coronavirus infection, highlighting a potential application of this molecule and other SYKis as prophylactic treatments for viral susceptibility.


Assuntos
Tratamento Farmacológico da COVID-19 , beta-Glucanas , Citocinas , Humanos , Alcaloides Indólicos , Lipopolissacarídeos , Macrófagos , Quinazolinonas , SARS-CoV-2 , Quinase Syk , Fator de Necrose Tumoral alfa
8.
Sci Data ; 9(1): 491, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35961990

RESUMO

The Toll-like receptor (TLR) and chemotaxis pathways are key components of the innate immune system. Subtle variation in the concentration, timing, and molecular structure of the ligands are known to affect downstream signaling and the resulting immune response. Computational modeling and simulation at the molecular interaction level can be used to study complex biological pathways, but such simulations require protein concentration values as model parameters. Here we report the development and application of targeted mass spectrometry assays to measure the absolute abundance of proteins of the mouse macrophage Toll-like receptor 4 (TLR4) and chemotaxis pathways. Two peptides per protein were quantified, if possible. The protein abundance values ranged from 1,332 to 227,000,000 copies per cell. They moderately correlated with transcript abundance values from a previously published mouse macrophage RNA-seq dataset, and these two datasets were combined to make proteome-wide abundance estimates. The datasets produced during this investigation can be used for pathway modeling and simulation, as well as for other studies of the TLR and chemotaxis pathways.


Assuntos
Quimiotaxia , Macrófagos , Receptores Toll-Like , Animais , Ligantes , Macrófagos/metabolismo , Camundongos , Transdução de Sinais , Receptores Toll-Like/metabolismo
9.
RNA ; 28(9): 1263-1278, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35764396

RESUMO

Measurement of gene expression at the single-cell level has advanced the study of transcriptional regulation programs in healthy and disease states. In particular, single-cell approaches have shed light on the high level of transcriptional heterogeneity of individual cells, both at baseline and in response to experimental or environmental perturbations. We have developed a method for high-content imaging (HCI)-based quantification of relative changes in transcript abundance at the single-cell level in human primary immune cells and have validated its performance under multiple experimental conditions to demonstrate its general applicability. This method, named hcHCR, combines the sensitivity of the hybridization chain reaction (HCR) for the visualization of RNA in single cells, with the speed, scalability, and reproducibility of HCI. We first tested eight cell attachment substrates for short-term culture of primary human B cells, T cells, monocytes, or neutrophils. We then miniaturized HCR in 384-well format and documented the ability of the method to detect changes in transcript abundance at the single-cell level in thousands of cells for each experimental condition by HCI. Furthermore, we demonstrated the feasibility of multiplexing gene expression measurements by simultaneously assaying the abundance of three transcripts per cell at baseline and in response to an experimental stimulus. Finally, we tested the robustness of the assay to technical and biological variation. We anticipate that hcHCR will be suitable for low- to medium-throughput chemical or functional genomics screens in primary human cells, with the possibility of performing screens on cells obtained from patients with a specific disease.


Assuntos
Regulação da Expressão Gênica , Genômica , Humanos , RNA Mensageiro/genética , Reprodutibilidade dos Testes
10.
Bio Protoc ; 11(21): e4205, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34859120

RESUMO

The ability to identify the role of a particular gene within a system is dependent on control of the expression of that gene. In this protocol, we describe a method for stable, conditional expression of Nod-Like receptors (NLRs) in THP-1 cells using a lentiviral expression system. This system combines all the necessary components for tetracycline-inducible gene expression in a single lentivector with constitutive co-expression of a selection marker, which is an efficient means for controlling gene expression using a single viral infection of cells. This is done in a third generation lentiviral expression platform that improves the safety of lentiviruses and allows for greater gene expression than previous lentiviral platforms. The lentiviral expression plasmid is first engineered to contain the gene of interest driven by a TRE (tetracycline response element) promoter in a simple gateway cloning step and is then co-transfected into HEK293T cells, along with packaging and envelope plasmids to generate the virus. The virus is used to infect a cell type of interest at a low MOI so that the majority of the transduced cells contain a single viral integration. Infected cells are grown under selection, and viral integration is validated by qPCR. Gene expression in stably transduced cells is induced with doxycycline and validated by qPCR, immunoblot, and flow cytometry. This flexible lentiviral expression platform may be used for stable and robust induction of a gene of interest in a range of cells for multiple applications. Graphic abstract: Schematic overview of lentiviral transduction of THP-1 cells.

12.
mSystems ; 6(4): e0030621, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34342534

RESUMO

The innate immune system is the body's first line of defense against pathogens and its protection against infectious diseases. On the surface of host myeloid cells, Toll-like receptor 4 (TLR4) senses lipopolysaccharide (LPS), the major outer membrane component of Gram-negative bacteria. Intracellularly, LPS is recognized by caspase 11 through the noncanonical inflammasome to induce pyroptosis-an inflammatory form of lytic cell death. While TLR4-mediated signaling perturbations result in secretion of cytokines and chemokines that help clear infection and facilitate adaptive immunity, caspase 11-mediated pyroptosis leads to the release of damage-associated molecular patterns and inflammatory mediators. Although the core signaling events and many associated proteins in the TLR4 signaling pathway are known, the complex signaling events and protein networks within the noncanonical inflammasome pathway remain obscure. Moreover, there is mounting evidence for pathogen-specific innate immune tuning. We characterized the major LPS structures from two different pathogens, modeled their binding to the surface receptors, systematically examined macrophage inflammatory responses to these LPS molecules, and surveyed the temporal differences in global protein secretion resulting from TLR4 and caspase 11 activation in macrophages using mass spectrometry (MS)-based quantitative proteomics. This integrated strategy, spanning functional activity assays, top-down structural elucidation of endotoxins, and secretome analysis of stimulated macrophages, allowed us to identify crucial differences in TLR4- and caspase 11-mediated protein secretion in response to two Gram-negative bacterial endotoxins. IMPORTANCE Macrophages and monocytes are innate immune cells playing an important role in orchestrating the initial innate immune response to bacterial infection and the tissue damage. This response is facilitated by specific receptors on the cell surface and intracellularly. One of the bacterial molecules recognized is a Gram-negative bacteria cell wall component, lipopolysaccharide (LPS). The structure of LPS differs between different species. We have characterized the innate immune responses to the LPS molecules from two bacteria, Escherichia coli and Bordetella pertussis, administered either extracellularly or intracellularly, whose structures we first determined. We observed marked differences in the temporal dynamics and amounts of proteins secreted by the innate immune cells stimulated by any of these molecules and routes. This suggests that there is specificity in the first line of response to different Gram-negative bacteria that can be explored to tailor specific therapeutic interventions.

13.
14.
Sci Signal ; 14(694)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344832

RESUMO

Noncanonical inflammasome activation by cytosolic lipopolysaccharide (LPS) is a critical component of the host response to Gram-negative bacteria. Cytosolic LPS recognition in macrophages is preceded by a Toll-like receptor (TLR) priming signal required to induce transcription of inflammasome components and facilitate the metabolic reprograming that fuels the inflammatory response. Using a genome-scale arrayed siRNA screen to find inflammasome regulators in mouse macrophages, we identified the mitochondrial enzyme nucleoside diphosphate kinase D (NDPK-D) as a regulator of both noncanonical and canonical inflammasomes. NDPK-D was required for both mitochondrial DNA synthesis and cardiolipin exposure on the mitochondrial surface in response to inflammasome priming signals mediated by TLRs, and macrophages deficient in NDPK-D had multiple defects in LPS-induced inflammasome activation. In addition, NDPK-D was required for the recruitment of TNF receptor-associated factor 6 (TRAF6) to mitochondria, which was critical for reactive oxygen species (ROS) production and the metabolic reprogramming that supported the TLR-induced gene program. NDPK-D knockout mice were protected from LPS-induced shock, consistent with decreased ROS production and attenuated glycolytic commitment during priming. Our findings suggest that, in response to microbial challenge, NDPK-D-dependent TRAF6 mitochondrial recruitment triggers an energetic fitness checkpoint required to engage and maintain the transcriptional program necessary for inflammasome activation.


Assuntos
Inflamassomos , Nucleosídeo Difosfato Quinase D , Animais , Inflamassomos/genética , Inflamassomos/metabolismo , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Camundongos , Mitocôndrias/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nucleosídeo Difosfato Quinase D/metabolismo , Espécies Reativas de Oxigênio/metabolismo
15.
Trends Immunol ; 42(9): 807-823, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34334306

RESUMO

Inflammation driven by the NLRP3 inflammasome in macrophages is an important contributor to chronic metabolic diseases that affect growing numbers of individuals. Many of these diseases involve the pathologic accumulation of endogenous lipids or their oxidation products, which can activate NLRP3. Other endogenous lipids, however, can inhibit the activation of NLRP3. The intracellular mechanisms by which these lipids modulate NLRP3 activity are now being identified. This review discusses emerging evidence suggesting that organelle stress, particularly involving mitochondria, lysosomes, and the endoplasmic reticulum, may be key in lipid-induced modification of NLRP3 inflammasome activity.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Estresse do Retículo Endoplasmático , Humanos , Lipídeos , Mitocôndrias
16.
J Neuroinflammation ; 18(1): 125, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34082753

RESUMO

BACKGROUND: A key factor in the development of viral encephalitis is a virus crossing the blood-brain barrier (BBB). We have previously shown that age-related susceptibility of mice to the La Crosse virus (LACV), the leading cause of pediatric arbovirus encephalitis in the USA, was associated with the ability of the virus to cross the BBB. LACV infection in weanling mice (aged around 3 weeks) results in vascular leakage in the olfactory bulb/tract (OB/OT) region of the brain, which is not observed in adult mice aged > 6-8 weeks. Thus, we studied age-specific differences in the response of brain capillary endothelial cells (BCECs) to LACV infection. METHODS: To examine mechanisms of LACV-induced BBB breakdown and infection of the CNS, we analyzed BCECs directly isolated from weanling and adult mice as well as established a model where these cells were infected in vitro and cultured for a short period to determine susceptibility to virus infection and cell death. Additionally, we utilized correlative light electron microscopy (CLEM) to examine whether changes in cell morphology and function were also observed in BCECs in vivo. RESULTS: BCECs from weanling, but not adult mice, had detectable infection after several days in culture when taken ex vivo from infected mice suggesting that these cells could be infected in vitro. Further analysis of BCECs from uninfected mice, infected in vitro, showed that weanling BCECs were more susceptible to virus infection than adult BCECs, with higher levels of infected cells, released virus as well as cytopathic effects (CPE) and cell death. Although direct LACV infection is not detected in the weanling BCECs, CLEM analysis of brain tissue from weanling mice indicated that LACV infection induced significant cerebrovascular damage which allowed virus-sized particles to enter the brain parenchyma. CONCLUSIONS: These findings indicate that BCECs isolated from adult and weanling mice have differential viral load, infectivity, and susceptibility to LACV. These age-related differences in susceptibility may strongly influence LACV-induced BBB leakage and neurovascular damage allowing virus invasion of the CNS and the development of neurological disease.


Assuntos
Envelhecimento , Barreira Hematoencefálica/virologia , Capilares/virologia , Morte Celular , Encefalite da Califórnia/virologia , Células Endoteliais/patologia , Células Endoteliais/virologia , Vírus La Crosse/fisiologia , Animais , Animais Recém-Nascidos , Barreira Hematoencefálica/fisiopatologia , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Encéfalo/virologia , Capilares/patologia , Caspase 3/fisiologia , Técnicas de Cultura de Células , Modelos Animais de Doenças , Encefalite da Califórnia/patologia , Encefalite da Califórnia/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Ensaio de Placa Viral
17.
Cell Syst ; 12(4): 338-352.e5, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33894945

RESUMO

Hit selection from high-throughput assays remains a critical bottleneck in realizing the potential of omic-scale studies in biology. Widely used methods such as setting of cutoffs, prioritizing pathway enrichments, or incorporating predicted network interactions offer divergent solutions yet are associated with critical analytical trade-offs. The specific limitations of these individual approaches and the lack of a systematic way by which to integrate their rankings have contributed to limited overlap in the reported results from comparable genome-wide studies and costly inefficiencies in secondary validation efforts. Using comparative analysis of parallel independent studies as a benchmark, we characterize the specific complementary contributions of each approach and demonstrate an optimal framework to integrate these methods. We describe selection by iterative pathway group and network analysis looping (SIGNAL), an integrated, iterative approach that uses both pathway and network methods to optimize gene prioritization. SIGNAL is accessible as a rapid user-friendly web-based application (https://signal.niaid.nih.gov). A record of this paper's transparent peer review is included in the Supplemental information.


Assuntos
Genômica/métodos , Ensaios de Triagem em Larga Escala/métodos , Internet/normas , Humanos
18.
PLoS Pathog ; 17(3): e1009395, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33684179

RESUMO

The mammalian immune system is constantly challenged by signals from both pathogenic and non-pathogenic microbes. Many of these non-pathogenic microbes have pathogenic potential if the immune system is compromised. The importance of type I interferons (IFNs) in orchestrating innate immune responses to pathogenic microbes has become clear in recent years. However, the control of opportunistic pathogens-and especially intracellular bacteria-by type I IFNs remains less appreciated. In this study, we use the opportunistic, Gram-negative bacterial pathogen Burkholderia cenocepacia (Bc) to show that type I IFNs are capable of limiting bacterial replication in macrophages, preventing illness in immunocompetent mice. Sustained type I IFN signaling through cytosolic receptors allows for increased expression of autophagy and linear ubiquitination mediators, which slows bacterial replication. Transcriptomic analyses and in vivo studies also show that LPS stimulation does not replicate the conditions of intracellular Gram-negative bacterial infection as it pertains to type I IFN stimulation or signaling. This study highlights the importance of type I IFNs in protection against opportunistic pathogens through innate immunity, without the need for damaging inflammatory responses.


Assuntos
Infecções por Burkholderia/imunologia , Burkholderia cenocepacia/imunologia , Imunidade Inata/imunologia , Interferon Tipo I/imunologia , Macrófagos/imunologia , Animais , Citosol/imunologia , Citosol/microbiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
19.
Clin Drug Investig ; 41(2): 133-147, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33527237

RESUMO

BACKGROUND: Many people infected with hepatitis C virus have comorbidities, including hypercholesterolemia, that are treated with statins. In this study, we evaluated the drug-drug interaction potential of the hepatitis C virus inhibitors elbasvir (EBR) and grazoprevir (GZR) with statins. Pitavastatin, rosuvastatin, pravastatin, and atorvastatin are substrates of organic anion-transporting polypeptide 1B, whereas rosuvastatin and atorvastatin are also breast cancer resistance protein substrates. METHODS: Three open-label, phase I clinical trials in healthy adults were conducted with multiple daily doses of oral GZR or EBR/GZR and single oral doses of statins. Trial 1: GZR 200 mg plus pitavastatin 10 mg. Trial 2: Part 1, GZR 200 mg plus rosuvastatin 10 mg, then EBR 50 mg/GZR 200 mg plus rosuvastatin 10 mg; Part 2, EBR 50 mg/GZR 200 mg plus pravastatin 40 mg. Trial 3: EBR 50 mg/GZR 200 mg plus atorvastatin 10 mg. RESULTS: Neither GZR nor EBR pharmacokinetics were meaningfully affected by statins. Coadministration of EBR/GZR did not result in clinically relevant changes in the exposure of pitavastatin or pravastatin. However, EBR/GZR increased exposure to rosuvastatin (126%) and atorvastatin (94%). Coadministration of statins plus GZR or EBR/GZR was generally well tolerated. CONCLUSIONS: Although statins do not appreciably affect EBR or GZR pharmacokinetics, EBR/GZR can impact the pharmacokinetics of certain statins, likely via inhibition of breast cancer resistance protein but not organic anion-transporting polypeptide 1B. Coadministration of EBR/GZR with pitavastatin or pravastatin does not require adjustment of either dose of statin, whereas the dose of rosuvastatin and atorvastatin should be decreased when coadministered with EBR/GZR.


Assuntos
Amidas/farmacocinética , Antivirais/farmacocinética , Benzofuranos/farmacocinética , Carbamatos/farmacocinética , Ciclopropanos/farmacocinética , Imidazóis/farmacocinética , Quinoxalinas/farmacocinética , Sulfonamidas/farmacocinética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adolescente , Adulto , Atorvastatina/farmacocinética , Interações Medicamentosas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/metabolismo , Pravastatina/farmacocinética , Quinolinas/farmacocinética , Rosuvastatina Cálcica/farmacocinética , Adulto Jovem
20.
Nature ; 589(7840): 131-136, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33239787

RESUMO

The liver connects the intestinal portal vasculature with the general circulation, using a diverse array of immune cells to protect from pathogens that translocate from the gut1. In liver lobules, blood flows from portal triads that are situated in periportal lobular regions to the central vein via a polarized sinusoidal network. Despite this asymmetry, resident immune cells in the liver are considered to be broadly dispersed across the lobule. This differs from lymphoid organs, in which immune cells adopt spatially biased positions to promote effective host defence2,3. Here we used quantitative multiplex imaging, genetic perturbations, transcriptomics, infection-based assays and mathematical modelling to reassess the relationship between the localization of immune cells in the liver and host protection. We found that myeloid and lymphoid resident immune cells concentrate around periportal regions. This asymmetric localization was not developmentally controlled, but resulted from sustained MYD88-dependent signalling induced by commensal bacteria in liver sinusoidal endothelial cells, which in turn regulated the composition of the pericellular matrix involved in the formation of chemokine gradients. In vivo experiments and modelling showed that this immune spatial polarization was more efficient than a uniform distribution in protecting against systemic bacterial dissemination. Together, these data reveal that liver sinusoidal endothelial cells sense the microbiome, actively orchestrating the localization of immune cells, to optimize host defence.


Assuntos
Microbioma Gastrointestinal/imunologia , Fígado/imunologia , Fígado/microbiologia , Simbiose/imunologia , Animais , Bactérias/imunologia , Bactérias/isolamento & purificação , Separação Celular , Quimiocina CXCL9/imunologia , Células Endoteliais/citologia , Células Endoteliais/imunologia , Feminino , Humanos , Células de Kupffer/citologia , Células de Kupffer/imunologia , Células de Kupffer/metabolismo , Fígado/irrigação sanguínea , Fígado/citologia , Linfócitos/imunologia , Masculino , Camundongos , Modelos Imunológicos , Imagem Molecular , Células Mieloides/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais , Simbiose/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...