Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Mol Oral Microbiol ; 29(5): 219-32, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24890414

RESUMO

Treponema denticola is an oral spirochete and periopathogen that transitions from low abundance in healthy subgingival crevices to high abundance in periodontal pockets. The T. denticola response regulator AtcR harbors the relatively rare, LytTR DNA-binding domain. LytTR domain containing response regulators control critical transcriptional responses required for environmental adaptation. Using a multi-step bioinformatics approach, 26 strong lytTR recognition motifs were identified in the genome of T. denticola strain 35405. Electrophoretic mobility shift assays demonstrated that AtcR binds to these recognition motifs. High specificity-high affinity complexes formed with phosphorylated AtcR. The LytTR recognition sequences were found to exist in three distinct promoter architectures designated as LytTR1, LytTR2 and LytTR3 promoters. LytTR1 and LytTR2 promoters harbor σ(54) binding sites. The functional diversity of the proteins encoded by the putative AtcR regulon suggests that AtcR sits at the top of a regulatory cascade that plays a central role in facilitating T. denticola's ability to adapt to changing environmental conditions and thrive in periodontal pockets.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/genética , Doenças Periodontais/microbiologia , Regulon/genética , Fatores de Transcrição/genética , Treponema denticola/genética , Adaptação Fisiológica/genética , Técnicas Bacteriológicas , Biologia Computacional , Progressão da Doença , Ensaio de Desvio de Mobilidade Eletroforética , Genoma Bacteriano/genética , Humanos , Motivos de Nucleotídeos/genética , Regiões Promotoras Genéticas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Análise de Sequência de DNA , Fator sigma/genética , Transcrição Gênica/genética
2.
J Dent Res ; 90(10): 1155-63, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21447698

RESUMO

In the healthy subgingiva, oral treponemes account for a small percentage of the total bacteria. However, in diseased periodontal pockets, treponemes thrive and become a dominant component of the bacterial population. Oral treponemes are uniquely adept at capitalizing on the environmental conditions that develop with periodontal disease. The molecular basis of adaptive responses of oral treponemes is just beginning to be investigated and defined. The completion of several treponeme genome sequences and the characterization of global regulatory systems provide an important starting point in the analysis of signaling and adaptive responses. In this review, we discuss existing literature focused on the genetic regulatory mechanisms of Treponema denticola and present an overview of the possible roles of regulatory proteins identified through genome analyses. This information provides insight into the possible molecular mechanisms utilized by oral spirochetes to survive in the periodontal pocket and transition from a minor to a dominant organism.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Bolsa Periodontal/microbiologia , Transdução de Sinais/genética , Treponema denticola/genética , Adaptação Fisiológica , Animais , Sequência de Bases , GMP Cíclico/análogos & derivados , GMP Cíclico/fisiologia , RNA Polimerases Dirigidas por DNA/genética , Histidina Quinase , Humanos , Proteínas Quinases/genética , Fator sigma/genética , Treponema denticola/fisiologia
3.
Appl Environ Microbiol ; 67(3): 1375-9, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11229935

RESUMO

Previous work with Pseudomonas aeruginosa showed that catalase activity in biofilms was significantly reduced relative to that in planktonic cells. To better understand biofilm physiology, we examined possible explanations for the differential expression of catalase in cells cultured in these two different conditions. For maximal catalase activity, biofilm cells required significantly more iron (25 microM as FeCl(3)) in the medium, whereas planktonic cultures required no addition of iron. However, iron-stimulated catalase activity in biofilms was still only about one-third that in planktonic cells. Oxygen effects on catalase activity were also investigated. Nitrate-respiring planktonic cultures produced approximately twice as much catalase activity as aerobic cultures grown in the presence of nitrate; the nitrate stimulation effect could also be demonstrated in biofilms. Cultures fermenting arginine had reduced catalase levels; however, catalase repression was also observed in aerobic cultures grown in the presence of arginine. It was concluded that iron availability, but not oxygen availability, is a major factor affecting catalase expression in biofilms.


Assuntos
Biofilmes/crescimento & desenvolvimento , Catalase/metabolismo , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/fisiologia , Aerobiose , Anaerobiose , Aderência Bacteriana , Meios de Cultura , Ferro/metabolismo
4.
Photosynth Res ; 25(1): 49-57, 1990 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24420170

RESUMO

Soybean [Glycine max (L.) Merr. cv. Williams 82 and A3127] plants were grown in the field under long-term soil moisture deficit and irrigation to determine the effects of severe drought stress on the photosynthetic capacity of soybean leaves. Afternoon leaf water potentials, stomatal conductances, intercellular CO2 concentrations and CO2-assimilation rates for the two soil moisture treatments were compared during the pod elongation and seed enlargement stages of crop development. Leaf CO2-assimilation rates were measured with either ambient (340 µl CO2 l(-1)) or CO2-enriched (1800 µl CO2 l(-1)) air. Although seed yield and leaf area per plant were decreased an average of 48 and 31%, respectively, as a result of drought stress, leaf water potentials were reduced only an average of 0.27 MPa during the sampling period. Afternoon leaf CO2-assimilation rates measured with ambient air were decreased an average of 56 and 49% by soil moisture deficit for Williams 82 and A3127, respectively. The reductions in leaf photosynthesis of both cultivars were associated with similar decreases in leaf stomatal conductance and with small increases in leaf intercellular CO2 concentration. When the CO2-enriched air was used, similar afternoon leaf CO2-assimilation rates were found between the soil moisture treatments at each stage of crop development. These results suggest that photosynthetic capacity of soybean leaves is not reduced by severe soil moisture deficit when a stress develops gradually under field conditions.

5.
Photosynth Res ; 26(3): 213-22, 1990 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24420586

RESUMO

Simultaneous, non-invasive measurements were made of the rate of photosynthetic CO2 fixation and the state of activation of the chloroplast CF1CF0-ATP synthase (CF) in field-grown sunflower (Helianthus annuus L.) during the dark-to-light transition at sunrise. CO2 fixation showed a linear response with light intensity from zero to about 500-700 µE m(-2) s(-1). However, at light intensities of only 5-22 µE m(-2) s(-1), the energetic threshold for activation of the CF was found to be significantly lowered (as compared to the pre-dawn state), presumably through reduction of the regulatory sulfhdryl groups of the γ-subunit of the CF. When these studies were extended to chamber-grown plants, it was found that as little as 5 seconds of illumination at 4 µE m(-2) s(-1) caused apparently full CF reduction. It is clear, therefore, that the catalytic activation of CF is not rate limiting to the induction of carbon assimilation under field conditions during a natural dark-to-light transition at sunrise. A model, based on the redox properties of the regulatory sulfhydryls, was developed to examine the significance of sulfhydryl midpoint potential in explaining the differences in light sensitivity and oxidation and reduction kinetics, between the CF and other thioredoxin-modulated chloroplast enzymes. Computer simulations of the light-induced regulation of three representative thioredoxin-modulated enzymes are presented.

6.
Biotechnol Bioeng ; 27(4): 525-32, 1985 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18553703

RESUMO

Two endo-xylanases (1,4-beta-D-xylan xylanohydrolase, EC 3.2.1.8) were purified to homogeneity from a crude Aspergillus niger pentosanase preparation by Ultrogel AcA 54 gel permeation chromatography, SP-Sephadex C-25 cation exchange chromatography at pH 4.5, Sephadex G-50 gel permeation chromatography, and a second SP-Sephadex C-25 step, this one at pH 5.8. The two xylanases hydrolyzed soluble xylan more rapidly than insoluble branched xylan, but attacked each substance to an equal extent. Their low activity on a linear xylooligosaccharide mixture and absence of activity on insoluble xylan freed of branches suggest that the xylanases require a branch point nearby for significant attack. No xylose or L-arabinose was produced, the major products of low molecular weight being tri- and pentasaccharides and smaller amounts of di-, tetra-, and hexasaccharides. There was low activity on untreated and crystalline cellulose and on carboxymethylcellulose and no activity on other polysaccharides tested. These two xylanases had molecular weights of ca. 1.3 x 10(4) and similar amino acid profiles, high in acidic and low in sulfur-containing residues. Isoelectric points were 8.6 for I and 9.0 for II. Optimum pH values for activity were 6.0 and 5.5, respectively. In a 20-min assay at pH 5.5, each was most active at 45 degrees C, with activation energies up to 40 degrees C of 30.4 and 38.8 kJ/ mol, respectively. Optimum pH levels for stability were 5.0 and 6.0, with half-lives at 60 degrees C and those pHs of 20 and 75 min, respectively.

7.
Biotechnol Bioeng ; 27(4): 539-46, 1985 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18553705

RESUMO

An endo-xylanase (1,4-beta-D-xylan xylanohydrolase, EC 3.2.1.8) from Aspergillus niger was purified to homogeneity by chromatography with Ultrogel AcA 54, SP-Sephadex C-25 at pH 4.5, DEAE-Sephadex A-25 at pH 5.4, Sephadex G-50, and DEAE-Sephadex A-25 at pH 5.15. The enzyme was active on soluble xylan, on insoluble xylan only after arabinosyl-initiated branch points were removed, and on xylooligosaccharides longer than xylotetraose. There was slight activity on carboxymethyl-cellulose, arabinogalactan, glucomannan, and p-nitrophenyl-beta-D-glucopyranoside. The main products of the hydrolysis of soluble and insoluble xylan were oligosaccharides of intermediate length, especially the tri- and pentasaccharides. The isoelectric point of the enzyme was 3.65. It had a molecular weight of 2.8 x 10(4) by SDS-gel electrophoresis, and was high in acidic amino acids but low in those containing sulfur. Highest activity in a 20-min assay at pH 5 was between 40 and 45 degrees C, with an activation energy up to 40 degrees C of 11.1 kJ/mol. The optimum pH for activity was at 5.0. The enzyme was strongly activated by Ca(2+).

8.
Biotechnol Bioeng ; 27(4): 533-8, 1985 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18553704

RESUMO

A homogeneous endo-xylanase (1,4-beta-D-xylan xylanohydrolase, EC 3.2.1.8) was obtained from a crude Aspergillus niger pentosanase by chromatography with Ultrogel AcA 54, SP-Sephadex C-25 at pH 4.5, DEAE-Sephadex A-25 at pH 5.4, Sephadex G-50, and SP-Sephadex C-25 with a gradient from pH 2.8 to pH 4.6. It was much more active on soluble than on insoluble xylan, yielding large amounts of unreacted xylan and a mixture of oligosaccharides with chain lengths from two to six. No xylose or L-arabinose was produced. There was high activity on a xylopentaose through xylononaose mixture, but not on xylobiose, xylotriose, or xylotetraose. The enzyme had slight activity on untreated cellulose, carboxymethylcellulose, and pectin. Molecular weight was ca. 1.4 x 10(4), with an isoelectric point of 4.5 and an amino acid profile high in acidic but low in sulfur-containing residues. In a 25-min assay at pH 4.7, this endo-xylanase was most active at 45 degrees C, with an activation energy from 5 to 35 degrees C of 33.3 kJ/mol. The optimum pH for activity was 4.9. Decay in buffer was first order, with an activation energy at pH 4.7 from 48 to 53 degrees C of 460 kJ/mol. Optimum pH for stability was about 5.6, where the half-life at 48 degrees C in buffer was ca. 40 h.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...