Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202413404, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39313478

RESUMO

[2]Rotaxanes offer unique opportunities for studying and modulating charge separation and energy transfer, because the mechanical bond allows the robust, yet spatially dynamic tethering of photoactive groups. In this work, we synthesized [2]rotaxane triads comprising a central (aza)[10]CPP⊃C60 bis-adduct complex and two zinc porphyrin stoppers to address how the movable nanohoop affects light-induced charge separation and energy transfer between the rotaxane subcomponents. We found that neither the parent nanohoop [10]CPP nor its electron-deficient analogue aza[10]CPP actively participate in charge separation. In contrast, the nanohoops completely prevented through-space charge separation. This result is likely due to supramolecular "shielding", because charge separation was observed in the thread that acted as reference dyad. On the other hand, the suppression of charge transfer allowed the observation of energy transfer from the porphyrin triplet to the fullerene triplet state with a lifetime of ca. 25 ms. The presence of the interlocked nanohoops therefore leads to a dramatic switch between charge separation and energy transfer. We suggest that our results explain observations made by others in photovoltaic devices comprising nanohoops and may pave the way toward strategic uses of mechanically interlocked architectures in devices that feature (triplet) energy transfer.

2.
J Phys Chem Lett ; 15(26): 6805-6811, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38913548

RESUMO

Carbon nanohoops are promising precursors for the synthesis of nanotubes, whose structural dynamics are not well understood. Here, we investigate the conformational landscape and energetics of cycloparaphenylenes (CPPs), a methylene-bridged CPP and a carbon nanobelt. These nanohoops can form host-guest complexes with other rings, and understanding their structure is crucial for predicting their properties and identifying potential applications. We used a combination of ion mobility, tandem mass spectrometry, and density functional theory to characterize the nanohoops and their ring-in-ring complexes, following the energetics and conformations of their disassembly from intact complexes to fragment ions. Our results show structural integrity of the nanohoops and host-guest complexes. They also reveal interesting trends in size, packing density, stability, and structure between [6]CPP, the methylene-bridged CPP, and the carbon nanobelt as guests in ring-in-ring complexes. Taken together, our work illustrates how mass spectrometry data can help to unravel the rules that govern the formation of carbon nanohoop assemblies.

3.
J Phys Chem A ; 127(45): 9495-9501, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37934505

RESUMO

The supramolecular chemistry of cycloparaphenylenes (CPPs) is characterized by the ability of the ring system to undergo both concave and convex π-π interactions. As a consequence, ring-in-ring complexes can be formed in which the CPP serves as the host as well as the guest molecule ([n + x]CPP⊃[n]CPP). In this work, host-guest ring-in-ring complexes of [n]CPPs (n = 5-12) are investigated by means of electrospray ionization-tandem mass spectrometry (ESI-MS2) and laser desorption ionization mass spectrometry (LDI-MS). Extending the experimentally known complexes with ring size differences of five and six phenyl units (x = 5 and 6), we observe complexes with ring size differences of three up to seven phenyl units (x = 3-7). Energy-resolved collision experiments reveal that the charge is mainly located at the inner ring and complexes with phenyl unit differences of five and six are the most stable. In complexes featuring the same size difference, the complex stabilities slightly increase with an increasing size of the involved [n]CPPs. Utilizing the π-extended [12]carbon nanobelt ([12]CNB) as the guest also revealed an increase in complex stability. This study paves the way for a deeper understanding of the host-guest chemistry of CPPs.

4.
Chemistry ; 29(33): e202300668, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-36880222

RESUMO

Deriving diverse compound libraries from a single substrate in high yields remains to be a challenge in cycloparaphenylene chemistry. In here, a strategy for the late-stage functionalization of shape-persistent alkyne-containing cycloparaphenylene has been explored using readily available azides. The copper-free [3+2]azide-alkyne cycloaddition provided high yields (>90 %) in a single reaction step. Systematic variation of the azides from electron-rich to -deficient shines light on how peripheral substitution influences the characteristics of the resulting adducts. We find that among the most affected properties are the molecular shape, the oxidation potential, excited state features, and affinities towards different fullerenes. Joint experimental and theoretical results are presented including calculations with the state-of-the-art, artificial intelligence-enhanced quantum mechanical method 1 (AIQM1).


Assuntos
Azidas , Química Click , Química Click/métodos , Azidas/química , Inteligência Artificial , Alcinos/química , Reação de Cicloadição , Catálise
5.
Nanoscale ; 15(12): 5665-5670, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36896752

RESUMO

In this work, we compare for the first time the stability of [n]cycloparaphenylene ([n]CPP)-based host-guest complexes with Li+@C60 and C60 in the gas and the solution phase. Our gas-phase experiments reveal a significant increase in stability for the complexes featuring [9-12]CPP with Li+@C60. This increased interaction strength is also observed in solution. Isothermal titration calorimetry shows for the formation of [10]CPP⊃Li+@C60 a two orders of magnitude larger association constant than that for the C60 analog. Additionally, an increased binding entropy is observed. This study contributes to a better understanding of host-guest complexes between [n]CPPs and endohedral metallofullerenes at a molecular level, which is the prerequisite for future applications.

6.
Chemistry ; 29(16): e202203734, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36507855

RESUMO

We investigate the gas-phase chemistry of noncovalent complexes of [10]cycloparaphenylene ([10]CPP) with C60 and C70 by means of atmospheric pressure photoionization and electrospray ionization mass spectrometry. The literature-known [1 : 1] complexes, namely [10]CPP⊃C60 and [10]CPP⊃C70 , are observed as radical cations and anions. Their stability and charge distribution are studied using energy-resolved collision-induced dissociation (ER-CID). These measurements reveal that complexes with a C70 core exhibit a greater stability and, on the other hand, that the radical cations are more stable than the respective radical anions. Regarding the charge distribution, in anionic complexes charges are exclusively located on C60 or C70 , while the charges reside on [10]CPP in the case of cationic complexes. [2 : 1] complexes of the ([10]CPP2 ⊃C60/70 )+ ⋅/- ⋅ type are observed for the first time as isolated solitary gas-phase species. Here, C60 -based [2 : 1] complexes are less stable than the respective C70 analogues. By virtue of the high stability of cationic [1 : 1] complexes, [2 : 1] complexes show a strongly reduced stability of the radical cations. DFT analyses of the minimum geometries as well as molecular dynamics calculations support the experimental data. Furthermore, our novel gas-phase [2 : 1] complexes are also found in 1,2-dichlorobenzene. Insights into the thermodynamic parameters of the binding process as well as the species distribution are derived from isothermal titration calorimetry (ITC) measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...