Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37686167

RESUMO

Photophysical properties of a series of bis(arylydene)cycloalkanone dyes with various donor substituents are studied using quantum chemistry. Their capacity for luminescence and nonradiative relaxation through trans-cis isomerization is related to their structure, in particular, to the donor capacity of the substituents and the degree of conjugation due to the central cycloalkanone moiety. It is shown that cyclohexanone central moiety introduces distortions and disrupts the conjugation, thus leading to a nonmonotonic change in their properties. The increasing donor capacity of the substituents causes increase in the HOMO energy (rise in the oxidation potential) and decrease in the HOMO-LUMO gap, which results in the red shift of the absorption spectra. The ability of the excited dye to relax through fluorescence or through trans-cis isomerization is governed by the height of the barrier between the Franck-Condon and S1-S0 conical intersection regions on the potential energy surface of the lowest π-π* excited state. This barrier also correlates with the donor capacity of the substituents and the degree of conjugation between the central and donor moieties. The calculated fluorescence and trans-cis isomerization rates are in good agreement with the observed fluorescence quantum yields.


Assuntos
Corantes , Luminescência , Humanos , Relaxamento , Doadores de Tecidos , Modelos Teóricos
2.
Int J Mol Sci ; 23(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36499672

RESUMO

Photoprocesses in 1,4-diazadistyrylbenzene (1) and 1,3-diazadistyrylbenzene derivative (2) diperchlorates in MeCN were studied by absorption, luminescence, and kinetic laser spectroscopies. For compound 1, trans-cis-photoisomerization and intersystem crossing to a triplet state are observed. For compound 2, photoelectrocyclization is suggested. Quantum chemical calculations of diazadistyrylbenzene structures in the ground and excited states were carried out. The schemes for photoreactions were proposed.


Assuntos
Luminescência , Análise Espectral , Cinética
3.
Molecules ; 27(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36364429

RESUMO

A series of symmetrical dibenzylidene derivatives of cyclobutanone were synthesized with the goal of studying the physicochemical properties of cross-conjugated dienones (ketocyanine dyes). The structures of the products were established and studied by X-ray diffraction and by NMR and electronic spectroscopy. All the products had E,E-geometry. The oxidation and reduction potentials of the dienones were determined by cyclic voltammetry. The potentials were shown to depend on the nature, position, and number of substituents in the benzene rings. A linear correlation was found between the difference of the electrochemical oxidation and reduction potentials and the energy of the long-wavelength absorption maximum. This correlation can be employed to analyze the properties of other compounds of this type. Quantum chemistry was used to explain the observed regularities in the electrochemistry, absorption, and fluorescence of the dyes. The results are in good agreement with the experimental redox potentials and spectroscopy data.


Assuntos
Corantes , Fotoquímica , Eletroquímica , Oxirredução , Espectroscopia de Ressonância Magnética
4.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 78(Pt 2): 261-269, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35411864

RESUMO

A new linear luminophore consisting of five conjugated units of oxazole, phenylene and a central benzothiadiazole fragment, 4,7-bis[4-(1,3-oxazol-5-yl)phenyl]-2,1,3-benzothiadiazole, has been synthesized and characterized. Needle-like single-crystal samples up to 10 mm in length were obtained by physical vapor transport. The crystal structure was determined at 95 K and 293 K using single-crystal X-ray diffraction. With decreasing temperature, the space group P21/n does not change, but the unit-cell volume of the crystal decreases. The presence of intra- and intermolecular hydrogen bonds was established. Melting parameters (Tm = 305.5°C, ΔHm = 52.2 kJ mol-1) and the presence of a liquid-crystalline mesophase (TLC = 336.3°C, ΔHLC = 1.4 kJ mol-1) were determined by differential scanning calorimetry and in situ thermal polarization optical microscopy studies. The presence of linear chains of hydrogen bonds ensures high stability of the crystal structure in a wide temperature range. The luminophore is characterized by a large Stokes shift (5120-5670 cm-1) and a high quantum yield of fluorescence, reaching 96% in solutions (λmax = 517 nm) and 27% in thin crystalline films (λmax = 529 nm). The calculated absorption and emission spectra are in good agreement with the experimental data. Because of the excellent optical properties and high thermal stability, the new linear luminophore has great potential for application in organic photonics and optoelectronic devices.


Assuntos
Cristalização , Varredura Diferencial de Calorimetria , Cristalografia por Raios X , Ligação de Hidrogênio , Tiadiazóis
5.
ACS Omega ; 7(12): 10087-10099, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35382345

RESUMO

A series of symmetrical dibenzylidene derivatives of cyclohexanone were synthesized with the goal of studying the physicochemical properties of cross-conjugated dienones (ketocyanine dyes). The structures of the products were established and studied by X-ray diffraction, NMR spectroscopy, and electronic spectroscopy. All products had the E,E-geometry. The oxidation and reduction potentials of the dienones were determined by cyclic voltammetry. The potentials were shown to depend on the nature, position, and number of substituents in the benzene rings. A linear correlation was found between the difference of the electrochemical oxidation and reduction potentials and the energy of the long-wavelength absorption maximum. This correlation can be employed to analyze the properties of other compounds of this type. The frontier orbital energies and the vertical absorption and emission transitions were calculated using quantum chemistry. The results are in good agreement with experimental redox potentials and spectroscopic data.

6.
J Phys Chem A ; 126(13): 2111-2118, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35333057

RESUMO

The photogeneration of charges in bulk heterojunction organic photovoltaics is of crucial importance in the mechanism of charge separation. This results in the formation of both locally excited and charge-transfer exciplex states. While the former states are prone to radiative or nonradiative recombination, the latter ones can have a sufficiently long lifetime. In this work, the formation of charge-transfer exciplex states in pairs of PC61BM (acceptor) with different oligothiophenes (donors) is studied theoretically using density functional theory. The ground and excited states of three oligothiophene-PC61BM complexes are studied. It is found that the intensively absorbing state is localized on the oligothiophene. Another excited state is localized on PC61BM, being characterized by only slight absorption. The charge-transfer (CT) excited state of the complex lies either below or slightly higher than the locally excited (LE) states. The latter case is unfavorable for charge separation. Criteria for the efficient formation of charge-transfer exciplexes are found, and the possibility of oligothiophene modification to facilitate the formation of such exciplexes is explored. Shifting the donor absorption to the near IR, which is important for organic solar cells, is another goal of oligothiophene modification. A modified oligothiophene satisfying these two criteria is proposed. The structure and radiative lifetimes of the LE and CT states and also the binding energy of the CT states with respect to their dissociation into a radical cation and a radical anion are calculated. It is demonstrated that the lifetime of the CT exciplexes is sufficiently long to accomplish charge separation.

7.
Molecules ; 26(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070063

RESUMO

Amlodipine, a unique long-lasting calcium channel antagonist and antihypertensive drug, has weak fluorescence in aqueous solutions. In the current paper, we show that direct visualization of amlodipine in live cells is possible due to the enhanced emission in cellular environment. We examined the impact of pH, polarity and viscosity of the environment as well as protein binding on the spectral properties of amlodipine in vitro, and used quantum chemical calculations for assessing the mechanism of fluorescence quenching in aqueous solutions. The confocal fluorescence microscopy shows that the drug readily penetrates the plasma membrane and accumulates in the intracellular vesicles. Visible emission and photostability of amlodipine allow confocal time-lapse imaging and the drug uptake monitoring.


Assuntos
Anlodipino/farmacologia , Microscopia de Fluorescência , Anlodipino/química , Sobrevivência Celular/efeitos dos fármacos , Células HEK293 , Humanos , Indóis/metabolismo , Microscopia Confocal , Modelos Biológicos , Conformação Molecular , Soluções
8.
J Phys Chem A ; 124(39): 7927-7934, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882133

RESUMO

Molecules capable of thermally activated delayed fluorescence (TADF) are promising as emitters in organic light-emitting devices. Processes leading to and competing with TADF in 4,5-di(9H-carbazol-9-yl)-phthalonitrile are analyzed in detail. It is demonstrated that the key features of an efficient TADF emitter include the presence of two triplet states of different natures with potential energy surfaces crossing between the T1 and S1 minima and a noticeable dependence of the S1 → S0 oscillator strength on molecular deformations from low-frequency antisymmetric vibrational modes. These conclusions can be useful in the targeted design of efficient TADF emitters.

9.
Phys Chem Chem Phys ; 22(6): 3539-3544, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-31994567

RESUMO

Hole-hopping parameters for Marcus-like charge transport, Marcus hole hopping rates, and hole mobilities are calculated for a series of model dimers of a typical hole-transporting material α-NPD using multireference quantum chemistry. The parameters are extracted from the two-state energy profiles built for charge hopping between two states with a hole localized on each of the monomers. The dependence of the hopping integral on the intermolecular arrangement in the dimer is studied. It is shown that at short intermolecular distances strong orbital interactions between molecules cause a drastic increase in the hopping integral and, therefore, in the hopping rate.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 216: 161-172, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-30897377

RESUMO

The UV-Vis absorption spectra of difluoroboron ß-diketonates with aromatic substituents at the ß-carbon are studied thoroughly using DFT and TD-DFT with the CAM-B3LYP functional. The complicated experimental spectra of these dyes can be correctly interpreted by considering their structural features. A closer look at the calculated data shows that the conformational flexibility of these compounds markedly influences their spectral shape. For the complexes with an extended π system, several conformers with significantly different absorption spectra are present in the equilibrium mixture in solution. Introducing a donor group alters the electronic structure of the complexes, so the charge distribution asymmetry in the molecules increases and the nature of the electronic transitions changes. Thus, both types of substituents, aromatic and donor ones, affect the spectral shape. Understanding their roles may help one to explain the absorption spectra of these and similar compounds and predict their response to analytes and other factors.

11.
Photochem Photobiol Sci ; 18(1): 232-241, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30462131

RESUMO

The formation of a supramolecular complex of bis(18-crown-6)stilbene (1) and 4,4'-bipyridine with two ammoniopropyl N-substituents (3) and the substitution reaction between 1·3 and alkali and alkaline-earth metal perchlorates have been studied using absorption, steady-state fluorescence, and femtosecond transient absorption spectroscopy. The formation of 1·(Mn+)2 complexes in acetonitrile was demonstrated. The weak long-wavelength charge-transfer absorption band of 1·3 completely vanishes upon complexation with metal cations because of disruption of the pseudocyclic structure. The spectroscopic and luminescence parameters, stability and substitution constants were calculated. The relaxation scheme of the 1·3 singlet state excited by a 25 fs laser pulse was proposed. It includes very fast vibrational relaxation and direct (τCT-d = 0.32 ps) and back (τCT-b = 0.51 ps) electron transfer resulting in complete fluorescence quenching. The quantum-chemistry calculations revealed the species taking part in the ET process and elucidated the mechanism of relaxation of the excited complex.

12.
Phys Chem Chem Phys ; 20(24): 16876, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29876552

RESUMO

Correction for 'Ab initio calculation of energy levels of trivalent lanthanide ions' by Alexandra Ya. Freidzon et al., Phys. Chem. Chem. Phys., 2018, 20, 14564-14577.

13.
Phys Chem Chem Phys ; 20(21): 14564-14577, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29766167

RESUMO

The energy levels of Ln3+ ions are known to be only slightly dependent on the ion environment. This allows one to predict the spectra of f-f transitions in Ln3+ complexes using group theory and simple semiempirical models: Russell-Saunders scheme for spin-orbit coupling, ligand-field theory for the splitting of the electronic levels, and Judd-Ofelt parameterization for reproducing the intensity of f-f transitions. Nevertheless, a fully ab initio computational scheme employing no empirical parameterization and suitable for any asymmetrical environment of Ln3+ would be instructive. Here we present such a scheme based on the multireference SA-CASSCF/XMCQPDT2/SO-CASSCF (state-averaged complete active space SCF, quasi-degenerate perturbation theory, and spin-orbit CASSCF) approach for trivalent lanthanide ions from Ce3+ (4f1) to Yb3+ (4f13). To achieve the most accurate results, we analyse the factors that influence the accuracy of the calculation: basis set size, state averaging scheme, effect of the low-spin states on the energy gap between the high-spin states (e.g., effect of triplets on the septet-quintet gaps in f6 or f8 configurations), and radial and angular correlations in the 4f shell. Our calculated energy levels agree well with the experimental values. We have shown that low-lying highest-spin and second-highest spin states are reproduced very well, while for higher-lying states the accuracy of the calculation decreases. The procedure was verified by calculating optical emission spectra of NaYF4:Eu,Tb; YAG:Eu,Tb; and Tb(acac)3bpm (bpm is 2,2'-bipyridine, acac is acetylacetonate, and YAG is yttrium aluminium garnet). For these compounds ligand-field induced electric-dipole transition intensities were calculated.

14.
J Chem Phys ; 146(24): 244104, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28668052

RESUMO

The crystalline materials with nonlinear optical (NLO) properties are critically important for several technological applications, including nanophotonic and second harmonic generation devices. Urea is often considered to be a standard NLO material, due to the combination of non-centrosymmetric crystal packing and capacity for intramolecular charge transfer. Various approaches to crystal engineering of non-centrosymmetric molecular materials were reported in the literature. Here we propose using global lattice energy minimization to predict the crystal packing from the first principles. We developed a methodology that includes the following: (1) parameter derivation for polarizable force field AMOEBA; (2) local minimizations of crystal structures with these parameters, combined with the evolutionary algorithm for a global minimum search, implemented in program USPEX; (3) filtering out duplicate polymorphs produced; (4) reoptimization and final ranking based on density functional theory (DFT) with many-body dispersion (MBD) correction; and (5) prediction of the second-order susceptibility tensor by finite field approach. This methodology was applied to predict virtual urea polymorphs. After filtering based on packing similarity, only two distinct packing modes were predicted: one experimental and one hypothetical. DFT + MBD ranking established non-centrosymmetric crystal packing as the global minimum, in agreement with the experiment. Finite field approach was used to predict nonlinear susceptibility, and H-bonding was found to account for a 2.5-fold increase in molecular hyperpolarizability to the bulk value.

15.
J Phys Chem A ; 120(38): 7529-37, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27603707

RESUMO

The structure and ligand-localized excited states of [Eu(cfqH) (cfq)(H2O)4]Cl2 (cfqH is ciprofloxacin) are studied by XMCQDPT2/CASSCF with full geometry optimization. The complex includes one anionic and one zwitterionic ligand. Two low-lying triplet states, both localized on the anionic ligand, are found. One of them has sufficient energy to transfer to the (5)D1 sublevel of Eu(3+), because its T-S0 vertical transition energy is equal (or very close) to the (7)F0-(5)D1 Eu(3+) excitation energy. The other triplet state has a very small S0-T1 gap, which favors fast nonradiative relaxation. Two other triplet states are localized on the zwitterionic ligand. One low-lying excited singlet state (S1) is localized on the anionic ligand; the other excited singlet is localized on the zwitterionic one. Spin-orbit coupling constants were calculated for the relaxed geometry of each state (ground state, two low-lying triplets, and one low-lying excited singlet) by spin-orbit configuration interaction (CI) with Pauli-Breit Hamiltonian. Large spin-orbit coupling constants between S1 and both triplets together with small energy gaps are indicative of fast intersystem crossing (ISC) from the excited singlet state to the triplet manifold. This ISC process is followed by energy transfer from the ligand-localized triplet states to the (5)D1 sublevel of Eu(3+). However, relatively large spin-orbit coupling constants between S0 and one of the triplet states together with the small T-S0 energy gap shows that this state can decay without transferring its energy to Eu(3+). This mechanism is expected to be common for other Ln(3+)-fluoroquinolone complexes.


Assuntos
Ciprofloxacina/química , Európio/química , Elétrons , Transferência de Energia , Modelos Químicos , Estrutura Molecular , Processos Fotoquímicos
16.
Phys Chem Chem Phys ; 17(26): 16997-7006, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26062782

RESUMO

The nature of absorption bandshapes of dibenzoylmethanatoboron difluoride (DBMBF2) dye substituted in ortho-, meta-, and para-positions of the phenyl ring is investigated using DFT and TDDFT with the range-separated hybrid CAM-B3LYP functional and the 6-311G(d,p) basis set. The solvent effects are taken into account within the polarized continuum model. The vibronic bandshape is simulated using a time-dependent linear coupling model with a vertical gradient approach through an original code. For flexible chromophores, the spectra of individual conformers are summed up with Boltzmann factors. It is shown that the long-wavelength absorption bandshape of DBMBF2 derivatives is determined by three factors: the relative statistical weights of conformers with different electronic absorption patterns, the relative position and intensity of the second low-energy electronic transition, and the vibronic structure of individual electronic peaks. The latter is governed by the relationship between the hard vibrational modes, which contribute to vibronic progression, and soft modes, which provide broadening of the peaks. The simulated spectra of the dyes in the study are generally consistent with the available experimental data and explain the observed spectral features.

17.
J Phys Chem A ; 119(26): 6807-15, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26087319

RESUMO

The electronic absorption spectra of the symmetric cyanines exhibit dramatic dependence on the conjugated chain length: whereas short-chain homologues are characterized by the narrow and sharp absorption bands of high intensity, the long-chain homologues demonstrate very broad, structureless bands of low intensity. Spectra of the intermediate homologues combine both features. These broad bands are often explained using spontaneous symmetry-breaking and charge localization at one of the termini, and the combination of broad and sharp features was interpreted as coexistence of symmetric and asymmetric species in solution. These explanations were not supported by the first principle simulations until now. Here, we employ a combination of time-dependent density functional theory, a polarizable continuum model, and Franck-Condon (FC) approximation to predict the absorption line shapes for the series of 2-azaazulene and 1-methylpyridine-4-substituted polymethine dyes. To simulate inhomogeneous broadening by the solvent, the molecular structures are optimized in the presence of a finite electric field of various strengths. The calculated FC line shapes, averaged with the Boltzmann weights of different field strengths, reproduce the experimentally observed spectra closely. Although the polarizable continuum model accounts for the equilibrium solvent reaction field at absolute zero, the finite field accounts for the thermal fluctuations in the solvent, which break the symmetry of the solute molecule. This model of inhomogeneous broadening opens the possibility for computational studies of thermochromism. The choice of the global hybrid exchange-correlation functional SOGGA11-X, including 40% of the exact exchange, plays the critical role in the success of our model.


Assuntos
Indóis/química , Modelos Químicos , Solventes/química , Análise Espectral , Cátions/química , Simulação por Computador , Dimetil Sulfóxido/química , Teoria Quântica , Temperatura
18.
Photosynth Res ; 124(3): 315-35, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25948498

RESUMO

Using computational modeling and known 3D structure of proteins, we arrived at a rational spatial model of the orange carotenoid protein (OCP) and phycobilisome (PBS) interaction in the non-photochemical fluorescence quenching. The site of interaction is formed by the central cavity of the OCP monomer in the capacity of a keyhole to the characteristic external tip of the phycobilin-containing domain (PB) and folded loop of the core-membrane linker LCM within the PBS core. The same central protein cavity was shown to be also the site of the OCP and fluorescence recovery protein (FRP) interaction. The revealed geometry of the OCP to the PBLCM attachment is believed to be the most advantageous one as the LCM, being the major terminal PBS fluorescence emitter, gathers, before quenching by OCP, the energy from most other phycobilin chromophores of the PBS. The distance between centers of mass of the OCP carotenoid 3'-hydroxyechinenone (hECN) and the adjacent phycobilin chromophore of the PBLCM was determined to be 24.7 Å. Under the dipole-dipole approximation, from the point of view of the determined mutual orientation and the values of the transition dipole moments and spectral characteristics of interacting chromophores, the time of the direct energy transfer from the phycobilin of PBLCM to the S1 excited state of hECN was semiempirically calculated to be 36 ps, which corresponds to the known experimental data and implies the OCP is a very efficient energy quencher. The complete scheme of OCP and PBS interaction that includes participation of the FRP is proposed.


Assuntos
Proteínas de Bactérias/química , Cianobactérias/metabolismo , Ficobilinas/química , Ficobilissomas/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Cianobactérias/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Ficobilinas/metabolismo , Ficobilissomas/metabolismo , Estrutura Terciária de Proteína , Espectrometria de Fluorescência , Synechocystis/metabolismo
19.
J Phys Chem A ; 118(47): 11244-52, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25401919

RESUMO

An ab initio XMCQDPT2/CASSCF study of energy transfer processes in the dinuclear lanthanide complex [(Acac)3Eu(µ-Bpym)Tb(Acac)3] (Acac is acetylacetonate, and Bpym is 2,2'-bipyrimidine) and a corresponding computational procedure are presented. Because ligands in lanthanide complexes weakly interact with each other, the large dinuclear complex bearing seven organic ligands is divided into fragments that reproduce the electrostatic effects of the ions on the electronic and geometrical structure of the ligands. The multireference XMCQDPT2/CASSCF approach is directly applied to these relatively small fragments with reasonable computational cost. The calculated energies of the singlet and triplet excited states agree well with the experiment. Based on the calculated energies, the energy level diagrams of the complex are constructed and intramolecular energy transfer channels are determined.

20.
Dalton Trans ; 43(8): 3121-36, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24297298

RESUMO

Lanthanide complexes LnL3 (Ln = Sm, Eu, Tb, Dy, Tm, Yb, Lu) with aromatic o-phosphorylated ligands (HL(1) and HL(2)) have been synthesized and identified. Their molecular structure was proposed on the basis of a new complex approach, including DFT calculations, Sparkle/PM3 modelling, EXAFS spectroscopy and luminescent probing. The photophysical properties of all of the complexes were investigated in detail to obtain a deeper insight into the energy transfer processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...