RESUMO
Due to the increasing incidence of cancer, the consumption of highly toxic oncological drugs is continuously growing. Given the current lack of efficient technologies to remove/treat these toxic drugs in wastewater treatment plants, the environmental quality is compromised, and aquatic organisms are at risk. To address this critical environmental burden, a new strategy based on supported ionic liquids (SILs) for the simultaneous removal of oncologic drugs and toxicity reduction of aqueous samples is here proposed. Silica-based SILs functionalized with imidazolium-based and quaternary ammonium-based ILs were designed and kinetics and isotherm adsorption studies performed. Aiming to develop an adsorbent able to reduce the toxicity of aqueous samples contaminated with oncological drugs, the toxicity reduction was appraised using the model organism Danio rerio. The obtained results disclose that among the studied SILs, the [Si][N3888]Cl (silica functionalized with propyltrioctylammonium chloride) is the best adsorption material (maximum adsorption capacity, qmax = 67.64 mg g-1), with a fast adsorption rate (<20 min). Furthermore, [Si][N3888]Cl was able to remove the toxicity of the treated aqueous samples towards D. rerio embryos, as assessed by lethal and several sublethal endpoints, demonstrating that this material holds remarkable potential for oncological drugs pollution remediation.
RESUMO
The development of RNA-based drugs is highly pursued due to the possibility of creating viable and effective therapies. However, their translation to clinical practice strongly depends on efficient technologies to produce substantial levels of these biomolecules, with high purity and high quality. RNAs are commonly produced by chemical or enzymatic methods, displaying these limitations. In this sense, recombinant production arises as a promising, cost-effective method, allowing large-scale production of RNA. Rhodovulum sulfidophilum (R. sulfidophilum), a marine purple bacterium, offers the advantage of RNA secretion into the extracellular medium, which contains low levels of RNases and other impurities. Therefore, RNA recovery can be simplified compared to standard extraction protocols involving cell lysis, resulting in a more clarified sample and an improved downstream process. In this work, R. sulfidophilum was transformed with a plasmid DNA encoding pre-miR-29b-1, which is known to be involved in the Alzheimer's disease pathway. After production, the pre-miR-29b-1 was recovered through different extraction methods to verify the most advantageous one. A protocol for extracellular RNA recovery was then established, revealing to be a simpler and less time-consuming method, reducing around 16 h in execution time and the quantity of reagents needed when compared to other established methods. The new strategy brings the additional advantage of eliminating the toxic organic compounds routinely used in intracellular RNA extractions. Overall, the optimized process described here, using isopropanol as the precipitation agent, offers a greener, safer, and faster alternative for recombinant RNA recovery and concentration, with an extracellular RNA recovery of 7 µg/mL and target pre-miRNA-29b-1 recovery of 0.7 µg/L of medium.
RESUMO
BACKGROUND: Magnetic ionic liquids (MILs) have been explored in dispersive liquid-liquid microextraction (DLLME). Their usage allows to substitute centrifugation and/or filtration steps by a quick magnetic separation. Besides, effervescence-assisted DLLME is one of the most known options to improve the dispersion of the extractant in the sample, while allowing to avoid the consumption of external energy during dispersion. Despite these interesting features, only one study incorporates MILs containing the tetrachloroferrate anion in effervescence tablets. These MILs are highly viscous and liquid at room temperature, thus compromising the stability of the tablets when used as extraction microdevices in effervescence-assisted DLLME, and only allowing their use in the conventional MIL-DLLME mode. RESULTS: A new class of effervescence tablets containing a Ni(II)-based MIL, that is solid at room temperature, is here proposed. This type of tablets permits their use, for first time, in the in situ DLLME mode, occurring through the transformation of a water-soluble MIL into a water-insoluble MIL microdroplet. This way, the tablet formulation included: the MIL, the metathesis reagent lithium bis[(trifluoromethyl)sulfonyl]imide, NaH2PO4 and K2CO3 as effervescence precursors salts, and Na2SO4 as salting-out and desiccating agent. The method is combined with high-performance liquid-chromatography and both fluorescence and ultraviolet detection, for the determination of monohydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) and benzophenones (BPs), as biomarkers in urine. The method simply involved the addition of the effervescence tablet to the sample, thus taken place simultaneously the effervescence process and the metathesis reaction, without requiring any external energy consumption. The method presented limits of detection down to 10 ng L-1 for OH-PAHs and to 0.60 µg L-1 for BPs, inter-day relative standard deviations lower than 17 %, and average relative recoveries of 94 % in urine. The determined OH-PAHs contents in urine were between 0.40 and 16 µg L-1, and between 17.8 and 334 µg L-1 for BPs. SIGNIFICANCE: We have developed the first MIL-based effervescence tablets that are completely solid, thus improving the stability and robustness of these microdevices with respect to previously reported tablets involving MILs, while permitting to perform into the in situ DLLME mode (thus gaining in extraction efficiency). This approach including the MIL-based effervescence tablets constitutes an alternative on-site platform for the analysis of urine, as satisfactory precision, accuracy, and sensitivity are achieved despite not involving any external energy input within the analytical sample preparation setup. This method also constitutes the first application of MIL-based effervescence tablets for bioanalysis.
Assuntos
Biomarcadores , Líquidos Iônicos , Microextração em Fase Líquida , Comprimidos , Líquidos Iônicos/química , Microextração em Fase Líquida/métodos , Comprimidos/química , Biomarcadores/urina , Biomarcadores/análise , Humanos , Limite de Detecção , Fenômenos MagnéticosRESUMO
We propose an innovative approach to address the pressing need for efficient and transparent evaluation techniques to assess extraction processes' sustainability. In response to society's growing demand for natural products and the consequent surge in biomass exploration, a critical imperative arises to ensure that these processes are genuinely environmentally friendly. Extracting natural compounds has traditionally been regarded as a benign activity rooted in ancient practices. However, contemporary extraction methods can also significantly harm the environment if not carefully managed. Recognizing this, we developed a novel metric, Path2Green, tailored specifically and rooted in 12 new principles of a green extraction process. Path2Green seeks to provide a comprehensive framework beyond conventional metrics, offering a nuanced understanding of the environmental impact of extraction activities from biomass collection/production until the end of the process. By integrating factors such as resource depletion, energy consumption, waste generation, and biodiversity preservation, Path2Green aims to offer a holistic assessment of sustainability of an extraction approach. The significance of Path2Green lies in its ability to distill complex environmental data into a simple, accessible metric. This facilitates informed decision-making for stakeholders across industries, enabling them to prioritize greener extraction practices. Moreover, by setting clear benchmarks and standards, Path2Green incentivizes innovation and drives continuous improvement in sustainability efforts, being a new user-friendly methodology.
RESUMO
Amyloid-like fibrils are garnering keen interest in biotechnology as supramolecular nanofunctional units to be used as biomimetic platforms to control cell behavior. Recent insights into fibril functionality have highlighted their importance in tissue structure, mechanical properties, and improved cell adhesion, emphasizing the need for scalable and high-kinetics fibril synthesis. In this study, we present the instantaneous and bulk formation of amyloid-like nanofibrils from human platelet lysate (PL) using the ionic liquid cholinium tosylate as a fibrillating agent. The instant fibrillation of PL proteins upon supramolecular protein-ionic liquid interactions was confirmed from the protein conformational transition toward cross-ß-sheet-rich structures. These nanofibrils were utilized as building blocks for the formation of thin and flexible free-standing membranes via solvent casting to support cell self-aggregation. These PL-derived fibril membranes reveal a nanotopographically rough surface and high stability over 14 days under cell culture conditions. The culture of mesenchymal stem cells or tumor cells on the top of the membrane demonstrated that cells are able to adhere and self-organize in a three-dimensional (3D) spheroid-like microtissue while tightly folding the fibril membrane. Results suggest that nanofibril membrane incorporation in cell aggregates can improve cell viability and metabolic activity, recreating native tissues' organization. Altogether, these PL-derived nanofibril membranes are suitable bioactive platforms to generate 3D cell-guided microtissues, which can be explored as bottom-up strategies to faithfully emulate native tissues in a fully human microenvironment.
Assuntos
Plaquetas , Nanofibras , Humanos , Plaquetas/metabolismo , Plaquetas/química , Nanofibras/química , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Agregação Celular/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Amiloide/química , Amiloide/metabolismo , Membranas ArtificiaisRESUMO
The growing concerns on environmental pollution and sustainability have raised the interest on the development of functional biobased materials for different applications, including food packaging, as an alternative to the fossil resources-based counterparts, currently available in the market. In this work, functional wood inspired biopolymeric nanocomposite films were prepared by solvent casting of suspensions containing commercial beechwood xylans, cellulose nanofibers (CNF) and lignosulfonates (magnesium or sodium), in a proportion of 2:5:3 wt%, respectively. All films presented good homogeneity, translucency, and thermal stability up to 153 °C. The incorporation of CNF into the xylan/lignosulfonates matrix provided good mechanical properties to the films (Young's modulus between 1.08 and 3.79 GPa and tensile strength between 12.75 and 14.02 MPa). The presence of lignosulfonates imparted the films with antioxidant capacity (DPPH radical scavenging activity from 71.6 to 82.4 %) and UV barrier properties (transmittance ≤19.1 % (200-400 nm)). Moreover, the films obtained are able to successfully delay the browning of packaged fruit stored over 7 days at 4 °C. Overall, the obtained results show the potential of using low-cost and eco-friendly resources for the development of sustainable active food packaging materials.
Assuntos
Celulose , Embalagem de Alimentos , Lignina , Lignina/análogos & derivados , Nanocompostos , Nanofibras , Resistência à Tração , Madeira , Xilanos , Embalagem de Alimentos/métodos , Lignina/química , Nanocompostos/química , Celulose/química , Celulose/análogos & derivados , Madeira/química , Nanofibras/química , Xilanos/química , Antioxidantes/química , Frutas/químicaRESUMO
Enzyme immobilization can offer a range of significant advantages, including reusability, and increased selectivity, stability, and activity. In this work, a central composite design (CCD) of experiments and response surface methodology (RSM) were used to study, for the first time, the L-asparaginase (ASNase) immobilization onto functionalized carbon xerogels (CXs). The best results were achieved using CXs obtained by hydrothermal oxidation with nitric acid and subsequent heat treatment in a nitrogen flow at 600 °C (CX-OX-600). Under the optimal conditions (81â min of contact time, pHâ 6.2 and 0.36â g/L of ASNase), an immobilization yield (IY) of 100 % and relative recovered activity (RRA) of 103 % were achieved. The kinetic parameters obtained also indicate a 1.25-fold increase in the affinity of ASNase towards the substrate after immobilization. Moreover, the immobilized enzyme retained 97 % of its initial activity after 6 consecutive reaction cycles. All these outcomes confirm the promising properties of functionalized CXs as support for ASNase, bringing new insights into the development of an efficient and stable immobilization platform for use in the pharmaceutical industry, food industry, and biosensors.
Assuntos
Asparaginase , Carbono , Enzimas Imobilizadas , Géis , Asparaginase/química , Asparaginase/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Carbono/química , Géis/química , Cinética , Concentração de Íons de Hidrogênio , Estabilidade EnzimáticaRESUMO
Proteins are highly labile molecules, thus requiring the presence of appropriate solvents and excipients in their liquid milieu to keep their stability and biological activity. In this field, ionic liquids (ILs) have gained momentum in the past years, with a relevant number of works reporting their successful use to dissolve, stabilize, extract, and purify proteins. Different approaches in protein-IL systems have been reported, namely, proteins dissolved in (i) neat ILs, (ii) ILs as co-solvents, (iii) ILs as adjuvants, (iv) ILs as surfactants, (v) ILs as phase-forming components of aqueous biphasic systems, and (vi) IL-polymer-protein/peptide conjugates. Herein, we critically analyze the works published to date and provide a comprehensive understanding of the IL-protein interactions affecting the stability, conformational alteration, unfolding, misfolding, and refolding of proteins while providing directions for future studies in view of imminent applications. Overall, it has been found that the stability or purification of proteins by ILs is bispecific and depends on the structure of both the IL and the protein. The most promising IL-protein systems are identified, which is valuable when foreseeing market applications of ILs, e.g., in "protein packaging" and "detergent applications". Future directions and other possibilities of IL-protein systems in light-harvesting and biotechnology/biomedical applications are discussed.
Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Proteínas/química , Solventes/química , Água/química , PolímerosRESUMO
Artemisinin, a drug used to treat malaria, can be chemically synthesized or extracted from Artemisia annua L. However, the extraction method for artemisinin from biomass needs to be more sustainable while maintaining or enhancing its bioactivity. This work investigates the use of aqueous solutions of salts and ionic liquids with hydrotropic properties as alternative solvents for artemisinin extraction from Artemisia annua L. Among the investigated solvents, aqueous solutions of cholinium salicylate and sodium salicylate were found to be the most promising. To optimize the extraction process, a response surface method was further applied, in which the extraction time, hydrotrope concentration, and temperature were optimized. The optimized conditions resulted in extraction yields of up to 6.50 and 6.44 mg·g-1, obtained with aqueous solutions of sodium salicylate and cholinium salicylate, respectively. The extracts obtained were tested for their antimalarial activity, showing a higher efficacy against the Plasmodium falciparum strain compared with pure (synthetic) artemisinin or extracts obtained with conventional organic solvents. Characterization of the extracts revealed the presence of artemisinin together with other compounds, such as artemitin, chrysosplenol D, arteannuin B, and arteannuin J. These compounds act synergistically with artemisinin and enhance the antimalarial activity of the obtained extracts. Given the growing concern about artemisinin resistance, the results here obtained pave the way for the development of sustainable and biobased antimalarial drugs.
RESUMO
Although pentraxin-3 holds promise as a diagnosis/prognosis biomarker of microbial infections and lung cancer, its analysis in human serum can be constrained by matrix effects caused by high abundance proteins - human serum albumin and immunoglobulin G. Aqueous biphasic systems composed of polymers and citrate buffer are here proposed as a serum pretreatment step to improve the accuracy of pentraxin-3 analysis. Binodal curves were determined to identify the compositions required to form two phases and to correlate the polymers' properties and performance in serum pretreatment and biomarker extraction. Aqueous biphasic systems were evaluated regarding their ability to deplete human serum albumin and immunoglobulin G at the interphase. Polymers of relatively high to intermediate hydrophobicity were unveiled as efficient components to deplete high abundance serum proteins. Considering the possibility to extract pentraxin-3 from human serum into the polymer-rich phase, the system composed of polyethylene glycol with a molecular weight of 1000 g·mol-1 simultaneously achieved >93 % of human serum albumin and immunoglobulin G depletion and complete biomarker extraction. The accuracy of analysis of pretreated human serum by enzyme-linked immunosorbent assays outperformed that of a non-pretreated sample, with a relative error of 0.8 % compared to 14.6 %, contributing to boost pentraxin-3 usefulness as a biomarker.
Assuntos
Polietilenoglicóis , Polímeros , Humanos , Água , Albumina Sérica Humana , Imunoglobulina G , BiomarcadoresRESUMO
Antimicrobial photodynamic therapy (aPDT) is a potent tool to surpass the global rise of antimicrobial resistance; still, the effective topical administration of photosensitizers remains a challenge. Biopolymer-based adhesive films can safely extend the residence time of photosensitizers. However, their wide application is narrowed by their limited water absorption capacity and gel strength. In this study, pullulan-based films with a switchable character (from a solid film to an adhesive hydrogel) were developed. This was accomplished by the incorporation of a betaine-based deep eutectic solvent (DES) containing curcumin (4.4 µg.cm-2) into the pullulan films, which tuned the films' skin moisture absorption ability, and therefore they switch into an adhesive hydrogel capable of delivering the photosensitizer. The obtained transparent films presented higher extensibility (elongation at break up to 338.2%) than the pullulan counterparts (6.08%), when stored at 54% of relative humidity, and the corresponding hydrogels a 4-fold higher adhesiveness than commercial hydrogels. These non-cytotoxic adhesives allowed the inactivation (â¼5 log reduction), down to the detection limit of the method, of multiresistant strains of Staphylococcus aureus in ex vivo skin samples. Overall, these materials are promising for aPDT in the treatment of resistant skin infections, while being easily removed from the skin.
RESUMO
[This corrects the article DOI: 10.3389/fbioe.2023.1037436.].
RESUMO
Prostate cancer (PCa) is one of the cancer types that most affects males worldwide and is among the highest contributors to cancer mortality rates. Therefore, there is an urgent need to find strategies to improve the diagnosis of PCa. Microtechnologies have been gaining ground in biomedical devices, with microfluidics and lab-on-chip systems potentially revolutionizing medical diagnostics. In this paper, it is shown that prostate-specific antigen (PSA) can be detected through an immunoassay performed in a microbead-based microfluidic device after being extracted and purified from a serum sample through an aqueous biphasic system (ABS). Given their well-established status as ABS components for successful bioseparations, ionic liquids (ILs) and polymers were used in combination with buffered salts. Using both IL-based and polymer-based ABS, it was demonstrated that it is possible to detect PSA in non-physiological environments. It was concluded that the ABS that performed better in extracting the PSA from serum were those composed of tetrabutylammonium chloride ([N4444]Cl) and tetrabutylphosphonium bromide ([P4444]Br), both combined with phosphate buffer, and constituted by polyethylene glycol with a molecular weight of 1000 g/mol (PEG1000) with citrate buffer. In comparison with the assay with PSA prepared in phosphate-buffered saline (PBS) or human serum in which no ABS-mediated extraction was applied, assays attained lower limits of detection after IL-based ABS-mediated extraction. These results reinforce the potential of this method in future point-of-care (PoC) measurements.
Assuntos
Líquidos Iônicos , Neoplasias da Próstata , Masculino , Humanos , Antígeno Prostático Específico , Água , Neoplasias da Próstata/diagnóstico , Polímeros , FosfatosRESUMO
The consumption of cytostatics, pharmaceuticals prescribed in chemotherapy, is increasing every year and worldwide, along with the incidence of cancer. The presence and the temporal evolution of cytostatics in wastewaters from a Portuguese hospital center was evaluated through a 9-month sampling campaign, comprising a total of one hundred and twenty-nine samples, collected from May 2019 to February 2020. Eleven cytostatics out of thirteen pharmaceuticals were studied, including flutamide, mycophenolate mofetil and mycophenolic acid, which have never been monitored before. Target analytes were extracted and quantified by solid-phase extraction coupled to liquid-chromatography-tandem mass spectrometry analysis; the method was fully validated. All pharmaceuticals were detected in at least one sample, bicalutamide being the one found with higher frequency (detected in all samples), followed by mycophenolic acid, which was also the compound detected at higher concentrations (up to 5340 ± 211 ng/L). Etoposide, classified as carcinogenic to humans, was detected in 60% of the samples at concentrations up to 142 ± 15 ng/L. The risk from exposure to cytostatics was estimated for aquatic organisms living in receiving bodies. Cyclophosphamide, doxorubicin, etoposide, flutamide, megestrol and mycophenolic acid are suspected to induce risk. Long-term and synergic effects should not be neglected, even for the cytostatics for which no risk was estimated.
Assuntos
Citostáticos , Poluentes Químicos da Água , Humanos , Citostáticos/análise , Flutamida , Etoposídeo/análise , Ácido Micofenólico , Poluentes Químicos da Água/química , Extração em Fase Sólida/métodos , Monitoramento Ambiental/métodos , Preparações FarmacêuticasRESUMO
The emergence of biopharmaceuticals, including proteins, nucleic acids, peptides, and vaccines, revolutionized the medical field, contributing to significant advances in the prophylaxis and treatment of chronic and life-threatening diseases. However, biopharmaceuticals manufacturing involves a set of complex upstream and downstream processes, which considerably impact their cost. In particular, despite the efforts made in the last decades to improve the existing technologies, downstream processing still accounts for more than 80% of the total biopharmaceutical production cost. On the other hand, the formulation of biological products must ensure they maintain their therapeutic performance and long-term stability, while preserving their physical and chemical structure. Ionic-liquid (IL)-based approaches arose as a promise alternative, showing the potential to be used in downstream processing to provide increased purity and recovery yield, as well as excipients for the development of stable biopharmaceutical formulations. This manuscript reviews the most important progress achieved in both fields. The work developed is critically discussed and complemented with a SWOT analysis.
RESUMO
The purification of value-added compounds by three-phase partitioning (TPP) is a promising alternative to conventional processes since the target compound can be easily recovered from the liquid-liquid interphase. Although this technique has been successfully applied to the recovery of proteins, the minimization of the use of salts and solvents must be pursued to improve the overall process sustainability. Accordingly, we have here investigated the use of biobased glycine-betaine ionic liquids (IL) directly with honey, a carbohydrate-rich matrix, as phase-forming components of TPP systems. These ILTPP systems were applied in the purification of major royal jelly proteins (MRJPs) from honey. The results obtained show that MRJPs mostly precipitate in the ILTPP interphase, with a recovery yield ranging between 82.8% and 97.3%. In particular, MRJP1 can be obtained with a purity level up to 90.1%. Furthermore, these systems allow the simultaneous separation of antioxidants and carbohydrates to different liquid phases. The proposed approach allows the separation of proteins, antioxidants, and carbohydrates from honey in a single step, while using only ILs and a real carbohydrate-rich matrix, thus being sustainable TPP processes.
RESUMO
Polydopamine (PDA), a bioinspired polymer from mussel adhesive proteins, has attracted impressive attention as a novel coating for (nano) materials with an adequate conformal layer and adjustable thickness. Currently, PDA is obtained from dopamine chemical oxidation under alkaline conditions, limiting its use in materials sensible to alkaline environments. Envisaging a widespread use of PDA, the polymerization of dopamine by enzymatic catalysis allows the dopamine polymerization in a large range of pHs, overcoming thus the limitations of conventional chemical oxidation. Moreover, the conventional method of polymerization is a time-consuming process and produces PDA films with poor stability, which restricts its applications. On the other hand, the main bottleneck of enzyme-based biocatalytic processes is the high cost of the single use of the enzyme. In this work, laccase was used to catalyse dopamine polymerization. To improve its performance, a liquid support for integrating the laccase and its reuse together with the PDA production and recovery was developed using aqueous biphasic systems (ABS). Firstly, dopamine polymerization by laccase was optimized in terms of pH, temperature and initial dopamine concentration. It was demonstrated that the highest enzymatic polymerization of dopamine was achieved at pH 5.5, 30°C and 2 mg ml-1 of dopamine. Then, ABS composed of polymers, salts and ionic liquids were evaluated to optimize the laccase confinement in one phase while PDA is recovered in the opposite phase. The most promising ABS allowing the separation of laccase from the reaction product is composed of polypropylene glycol (400 g mol-1) and K2HPO4. The polymerization of dopamine in ABS leads to a remarkable improvement of polymerization of 3.9-fold in comparison to the conventional chemical PDA polymerization. The phase containing the confined laccase was reused for four consecutive reaction cycles, with a relative polymerization of 68.9% in the last cycle. The results of this work proved that ABS are a promising approach to create a liquid support for enzyme reuse allowing the process intensification efforts. The use of biocatalysts in ABS emerges as sustainable and alternative platforms from environmental and techno-economic points of view.
RESUMO
L-asparaginase (ASNase) is an aminohydrolase currently used in the pharmaceutical and food industries. Enzyme immobilization is an exciting option for both applications, allowing for a more straightforward recovery and increased stability. High surface area and customizable porosity make carbon xerogels (CXs) promising materials for ASNase immobilization. This work describes the influence of contact time, pH, and ASNase concentration on the immobilization yield (IY) and relative recovered activity (RRA) using the Central Composite Design methodology. The most promising results were obtained using CX with an average pore size of 4 nm (CX-4), reaching IY and RRA of 100%. At the optimal conditions (contact time 49 min, pH 6.73, and [ASNase] 0.26 mg·mL-1), the ASNase-CXs biocomposite was characterized and evaluated in terms of kinetic properties and operational, thermal, and pH stabilities. The immobilized ASNase onto CX-4 retained 71% of its original activity after six continuous reaction cycles, showed good thermal stability at 37 °C (RRA of 91% after 90 min), and was able to adapt to both acidic and alkaline environments. Finally, the results indicated a 3.9-fold increase in the immobilized ASNase affinity for the substrate, confirming the potential of CXs as a support for ASNase and as a cost-effective tool for subsequent use in the therapeutic and food sectors.
RESUMO
Compartmentalized structures obtained in all-aqueous settings have shown promising properties as cell encapsulation devices, as well as reactors for trans-membrane chemical reactions. While most approaches focus on the preparation of spherical devices, advances on the production of complex architectures have been enabled by the interfacial stability conferred by emulsion systems, namely mild aqueous two-phase systems (ATPS), or non-equilibrated analogues. However, the application of non-spherical structures has mostly been reported while keeping the fabricated materials at a stable interface, limiting the free-standing character, mobility and transposition of the obtained structures to different setups. Here, the fabrication of self-standing, malleable and perfusable tubular systems through all-aqueous interfacial assembly is shown, culminating in the preparation of independent objects with stability and homogeneity after disruption of the polymer-based aqueous separating system. Those hollow structures can be fabricated with a variety of widths, and rapidly printed as long structures at flow rates of 15 mm s-1 . The materials are used as compartments for cell culture, showcasing high cytocompatibility, and can be tailored to promote cell adhesion. Such structures may find application in fields that benefit from freeform tubular structures, including the biomedical field with, for example, cell encapsulation, and benchtop preparation of microfluidic devices.
Assuntos
Dispositivos Lab-On-A-Chip , Água , Polímeros , Água/químicaRESUMO
The transdermal administration of nonsteroidal anti-inflammatory drugs (NSAIDs) is a valuable and safer alternative to their oral intake. However, most of these drugs display low water solubility, which makes their incorporation into hydrophilic biopolymeric drug-delivery systems difficult. To overcome this drawback, aqueous solutions of bio-based deep eutectic solvents (DES) were investigated to enhance the solubility of ibuprofen, a widely used NSAID, leading to an increase in its solubility of up to 7917-fold when compared to its water solubility. These DES solutions were shown to be non-toxic to macrophages with cell viabilities of 97.4% (at ibuprofen concentrations of 0.25 mM), while preserving the anti-inflammatory action of the drug. Their incorporation into alginate-based hydrogels resulted in materials with a regular structure and higher flexibility. These hydrogels present a sustained release of the drug, which is able, when containing the DES aqueous solution comprising ibuprofen, to deliver 93.5% of the drug after 8 h in PBS. Furthermore, these hydrogels were able to improve the drug permeation across human skin by 8.5-fold in comparison with the hydrogel counterpart containing only ibuprofen. This work highlights the possibility to remarkably improve the transdermal administration of NSAIDs by combining new drug formulations based on DES and biopolymeric drug delivery systems.