RESUMO
RATIONALE AND OBJECTIVES: To compare a conventional T1 volumetric interpolated breath-hold examination (VIBE) with SPectral Attenuated Inversion Recovery (SPAIR) fat saturation and a deep learning (DL)-reconstructed accelerated VIBE sequence with SPAIR fat saturation achieving a 50 % reduction in breath-hold duration (hereafter, VIBE-SPAIRDL) in terms of image quality and diagnostic confidence. MATERIALS AND METHODS: This prospective study enrolled consecutive patients referred for upper abdominal MRI from November 2023 to December 2023 at a single tertiary center. Patients underwent upper abdominal MRI with acquisition of non-contrast and gadobutrol-enhanced conventional VIBE-SPAIR (fourfold acceleration, acquisition time 16 s) and VIBE-SPAIRDL (sixfold acceleration, acquisition time 8 s) on a 1.5 T scanner. Image analysis was performed by four readers, evaluating homogeneity of fat suppression, perceived signal-to-noise ratio (SNR), edge sharpness, artifact level, lesion detectability and diagnostic confidence. A statistical power analysis for patient sample size estimation was performed. Image quality parameters were compared by a repeated measures analysis of variance, and interreader agreement was assessed using Fleiss' κ. RESULTS: Among 450 consecutive patients, 45 patients were evaluated (mean age, 60 years ± 15 [SD]; 27 men, 18 women). VIBE-SPAIRDL acquisition demonstrated superior SNR (P < 0.001), edge sharpness (P < 0.001), and reduced artifacts (P < 0.001) with substantial to almost perfect interreader agreement for non-contrast (κ: 0.70-0.91) and gadobutrol-enhanced MRI (κ: 0.68-0.87). No evidence of a difference was found between conventional VIBE-SPAIR and VIBE-SPAIRDL regarding homogeneity of fat suppression, lesion detectability, or diagnostic confidence (all P > 0.05). CONCLUSION: Deep learning reconstruction of VIBE-SPAIR facilitated a reduction of breath-hold duration by half, while reducing artifacts and improving image quality. SUMMARY: Deep learning reconstruction of prospectively accelerated T1 volumetric interpolated breath-hold examination for upper abdominal MRI enabled a 50 % reduction in breath-hold time with superior image quality. KEY RESULTS: 1) In a prospective analysis of 45 patients referred for upper abdominal MRI, accelerated deep learning (DL)-reconstructed VIBE images with spectral fat saturation (SPAIR) showed better overall image quality, with better perceived signal-to-noise ratio and less artifacts (all P < 0.001), despite a 50 % reduction in acquisition time compared to conventional VIBE. 2) No evidence of a difference was found between conventional VIBE-SPAIR and accelerated VIBE-SPAIRDL regarding lesion detectability or diagnostic confidence.
RESUMO
OBJECTIVE: To prepare and analyze soy-lecithin-agar gels for non-toxic relaxometry phantoms with tissue-like relaxation times at 3T. METHODS: Phantoms mimicking the relaxation times of various tissues (gray and white matter, kidney cortex and medulla, spleen, muscle, liver) were built and tested with a clinical 3T whole-body MR scanner. Simple equations were derived to calculate the appropriate concentrations of soy lecithin and agar in aqueous solutions to achieve the desired relaxation times. Phantoms were tested for correspondence between measurements and calculated T1 and T2 values, reproducibility, spatial homogeneity, and temporal stability. T1 and T2 mapping techniques and a 3D T1-weighted sequence with high spatial resolution were applied. RESULTS: Except for the liver relaxation phantom, all phantoms were successfully and reproducibly produced. Good agreement was found between the targeted and measured relaxation times. The percentage deviations from the targeted relaxation times were less than 3% for T1 and less than 6.5% for T2. In addition, the phantoms were homogeneous and had little to no air bubbles. However, the phantoms were unstable over time: after a storage period of 4 weeks, mold growth and also changes in relaxation times were detected in almost all phantoms. CONCLUSION: Soy-lecithin-agar gels are a non-toxic material for the construction of relaxometry phantoms with tissue-like relaxation times. They are easy to prepare, inexpensive and allow independent adjustment of T1 and T2. However, there is still work to be done to improve the long-term stability of the phantoms.
Assuntos
Ágar , Lecitinas , Fígado , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Imageamento por Ressonância Magnética/métodos , Humanos , Ágar/química , Reprodutibilidade dos Testes , Fígado/diagnóstico por imagem , Lecitinas/química , Géis/química , Rim/diagnóstico por imagem , Glycine max , Baço/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Imageamento Tridimensional/métodos , Imagem Corporal Total/métodos , Processamento de Imagem Assistida por Computador/métodosRESUMO
BACKGROUND AND PURPOSE: Before quantitative imaging biomarkers (QIBs) acquired with magnetic resonance imaging (MRI) can be used for interventional trials in radiotherapy (RT), technical validation of these QIBs is necessary. The aim of this study was to assess the reproducibility of apparent diffusion coefficient (ADC) values, derived from diffusion-weighted (DW) MRI, in head and neck cancer using a 1.5 T MR-Linac (MRL) by comparison to a 3 T diagnostic scanner (DS). MATERIAL AND METHODS: DW-MRIs were acquired on MRL and DS for 15 head and neck cancer patients before RT and in week 2 and rigidly registered to the planning computed tomography. Mean ADC values were calculated for submandibular (SG) and parotid (PG) glands as well as target volumes (TV, gross tumor volume and lymph nodes), which were delineated based on computed tomography. Mean absolute ADC differences as well as within-subject coefficient of variation (wCV) and intraclass correlation coefficients (ICCs) were calculated for all volumes of interest. RESULTS: A total of 23 datasets were analyzed. Mean ADC difference (DS-MRL) for SG, PG and TV resulted in 142, 254 and 93·10-6 mm2/s. wCVs/ICCs, comparing MRL and DS, were determined as 13.7 %/0.26, 24.4 %/0.23 and 16.1 %/0.73 for SG, PG and TV, respectively. CONCLUSION: ADC values, measured on the 1.5 T MRL, showed reasonable reproducibility with an ADC underestimation in contrast to the DS. This ADC shift must be validated in further experiments and considered for future translation of QIB candidates from DS to MRL for response adaptive RT.
Assuntos
Neoplasias de Cabeça e Pescoço , Imageamento por Ressonância Magnética , Humanos , Reprodutibilidade dos Testes , Imagem de Difusão por Ressonância Magnética/métodos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Glândula ParótidaRESUMO
BACKGROUND: Hybrid MRI linear accelerators (MR-Linac) might enable individualized online adaptation of radiotherapy using quantitative MRI sequences as diffusion-weighted imaging (DWI). The purpose of this study was to investigate the dynamics of lesion apparent diffusion coefficient (ADC) in patients with prostate cancer undergoing MR-guided radiation therapy (MRgRT) on a 1.5T MR-Linac. The ADC values at a diagnostic 3T MRI scanner were used as the reference standard. PATIENTS AND AND METHODS: In this prospective single-center study, patients with biopsy-confirmed prostate cancer who underwent both an MRI exam at a 3T scanner (MRI3T) and an exam at a 1.5T MR-Linac (MRL) at baseline and during radiotherapy were included. Lesion ADC values were measured by a radiologist and a radiation oncologist on the slice with the largest lesion. ADC values were compared before vs. during radiotherapy (during the second week) on both systems via paired t-tests. Furthermore, Pearson correlation coefficient and inter-reader agreement were computed. RESULTS: A total of nine male patients aged 67 ± 6 years [range 60 - 67 years] were included. In seven patients, the cancerous lesion was in the peripheral zone, and in two patients the lesion was in the transition zone. Inter-reader reliability regarding lesion ADC measurement was excellent with an intraclass correlation coefficient of (ICC) > 0.90 both at baseline and during radiotherapy. Thus, the results of the first reader will be reported. In both systems, there was a statistically significant elevation of lesion ADC during radiotherapy (mean MRL-ADC at baseline was 0.97 ± 0.18 × 10-3 mm2/s vs. mean MRL-ADC during radiotherapy 1.38 ± 0.3 × 10-3 mm2/s, yielding a mean lesion ADC elevation of 0.41 ± 0.20 × 10-3 mm2/s, p < 0.001). Mean MRI3T-ADC at baseline was 0.78 ± 0.165 × 10-3 mm2/s vs. mean MRI3T-ADC during radiotherapy 0.99 ± 0.175 × 10-3 mm2/s, yielding a mean lesion ADC elevation of 0.21 ± 0.96 × 10-3 mm2/s p < 0.001). The absolute ADC values from MRL were consistently significantly higher than those from MRI3T at baseline and during radiotherapy (p < = 0.001). However, there was a strong positive correlation between MRL-ADC and MRI3T-ADC at baseline (r = 0.798, p = 0.01) and during radiotherapy (r = 0.863, p = 0.003). CONCLUSIONS: Lesion ADC as measured on MRL increased significantly during radiotherapy and ADC measurements of lesions on both systems showed similar dynamics. This indicates that lesion ADC as measured on the MRL may be used as a biomarker for evaluation of treatment response. In contrast, absolute ADC values as calculated by the algorithm of the manufacturer of the MRL showed systematic deviations from values obtained on a diagnostic 3T MRI system. These preliminary findings are promising but need large-scale validation. Once validated, lesion ADC on MRL might be used for real-time assessment of tumor response in patients with prostate cancer undergoing MR-guided radiation therapy.
Assuntos
Imageamento por Ressonância Magnética , Neoplasias da Próstata , Humanos , Masculino , Estudos de Viabilidade , Estudos Prospectivos , Reprodutibilidade dos Testes , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapiaRESUMO
PURPOSE: To test soy lecithin as a substance added to water for the construction of MRI phantoms with tissue-like diffusion coefficients. The performance of soy lecithin was assessed for the useable range of adjustable ADC values, the degree of non-Gaussian diffusion, simultaneous effects on relaxation times, and spectral signal properties. METHODS: Aqueous soy lecithin solutions of different concentrations (0%, 0.5%, 1%, 2%, 3% , 10%) and soy lecithin-agar gels were prepared and examined on a 3 Tesla clinical scanner at 18.5° ± 0.5°C. Echoplanar sequences (b values: 0-1000/3000 s/mm2 ) were applied for ADC measurements. Quantitative relaxometry and MRS were performed for assessment of T1 , T2 , and detectable spectral components. RESULTS: The presence of soy lecithin significantly restricts the diffusion of water molecules and mimics the nearly Gaussian nature of diffusion observed in tissue (for b values <1000 s/mm2 ). ADC values ranged from 2.02 × 10-3 mm2 /s to 0.48 × 10-3 mm2 /s and cover the entire physiological range reported on biological tissue. Measured T1 /T2 values of pure lecithin solutions varied from 2685/2013 to 668/133 ms with increasing concentration. No characteristic signals of soy lecithin were observed in the MR spectrum. The addition of agar to the soy lecithin solutions allowed T2 values to be well adjusted to typical values found in parenchymal tissue without affecting the soy lecithin-controlled ADC value. CONCLUSION: Soy lecithin is a promising substance for the construction of diffusion phantoms with tissue-like ADC values. It provides several advantages over previously proposed substances, in particular a wide range of adjustable ADC values, the lack of additional 1 H-signals, and the possibility to adjust ADC and T2 values (by adding agar) almost independently of each other.
Assuntos
Lecitinas , Imageamento por Ressonância Magnética , Ágar , Imagem de Difusão por Ressonância Magnética , Imagens de FantasmasRESUMO
BACKGROUND: Quantification of pancreatic fat (PF) and intrahepatic lipids (IHL) is of increasing interest in subjects at risk for metabolic diseases. There is limited data available on short- and medium-term variability of PF/IHL and on their dependence on nutritional status. PURPOSE: To assess short-term intraday variations of PF/IHL after a high-fat meal as well as medium-term changes after 5 days of high-caloric diet. STUDY TYPE: Prospective cohort study. SUBJECTS: A total of 12 subjects (six males) for intraday variations study, 15 male subjects for medium-term high-caloric diet study and 11 age- and body mass index (BMI)-matched controls. FIELD STRENGTH/SEQUENCE: A 3 T; chemical-shift encoded multiecho gradient echo sequence. ASSESSMENT: For the intraday study, subjects were scanned after overnight fasting and after a high fat meal on the same day. For the medium-term study, 26 subjects were scanned after overnight fasting with 15/11 rescanned after 5 days of high-calorie diet/isocaloric diet. Proton density fat fraction (PDFF) maps were generated inline on the scanner. Regions of interest were manually drawn in head, body, and tail of pancreas and in the liver by a medical physicist and a doctoral student (26/4 years of experience). PF was calculated as the average of the head, body, and tail measurements. STATISTICAL TESTS: Repeated measurements ANOVA for assessing changes in PF/IHL, linear correlation analyses for assessing relationships of PF/IHL with BMI. Significance level P < 0.05 for all. RESULTS: Nonsignificant changes in PF (2.6 ± 1.0 vs. 2.7 ± 0.9% after high-fat meal, 1.4 ± 0.8 vs. 1.5 ± 0.6% [high-caloric diet] and 1.5 ± 0.8 vs. 1.8 ± 1.0% [isocaloric control group]), nonsignificant changes in IHL after high-fat meal (2.6 ± 1.3 vs. 2.5 ± 0.9%) and in the control group (1.1 ± 0.6 vs. 1.2 ± 1.1%), significantly increased IHL after high-caloric diet (1.7 ± 2.2% vs. 2.7 ± 3.6%). Nonsignificant changes in PF (2.6 ± 1.0 vs. 2.7 ± 0.9% after high-fat meal, 1.4 ± 0.8 vs. 1.5 ± 0.6% [high-caloric diet] and 1.5 ± 0.8 vs. 1.8 ± 1.0% [isocaloric control group]), nonsignificant changes in IHL after high-fat meal (2.6 ± 1.3 vs. 2.5 ± 0.9%) and in the control group (1.1 ± 0.6 vs. 1.2 ± 1.1%), significantly increased IHL after 5-days of high-caloric diet (1.7 ± 2.2% vs. 2.7 ± 3.6%). DATA CONCLUSION: Time of day and nutritional status have no significant influence on PF/IHL and are therefore not likely to be major confounders in epidemiologic or clinical studies. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.
Assuntos
Fígado , Prótons , Tecido Adiposo/diagnóstico por imagem , Feminino , Humanos , Fígado/diagnóstico por imagem , Fígado/metabolismo , Imageamento por Ressonância Magnética , Masculino , Pâncreas/diagnóstico por imagem , Gravidez , Estudos ProspectivosRESUMO
OBJECTIVE: To provide a basis for the selection of suitable emulsifiers in oil-in-water emulsions used as tissue analogs for MRI experiments. Three different emulsifiers were investigated with regard to their ability to stabilize tissue-like oil-in-water emulsions. Furthermore, MR signal properties of the emulsifiers themselves and influences on relaxation times and ADC values of the aqueous phase were investigated. MATERIALS AND METHODS: Polysorbate 60, sodium dodecyl sulfate (SDS) and soy lecithin were used as emulsifiers. MR characteristics of emulsifiers were assessed in aqueous solutions and their function as a stabilizer was examined in oil-in-water emulsions of varying fat content (10, 20, 30, 40, 50%). Stability and homogeneity of the oil-in-water emulsions were evaluated with a delay of 3 h and 9 h after preparation using T1 mapping and visual control. Signal properties of the emulsifiers were investigated by 1H-MRS in aqueous emulsifier solutions. Relaxometry and diffusion weighted MRI (DWI) were performed to investigate the effect of various emulsifier concentrations on relaxation times (T1 and T2) and ADC values of aqueous solutions. RESULTS: Emulsions stabilized by polysorbate 60 or soy lecithin were stable and homogeneous across all tested fat fractions. In contrast, emulsions with SDS showed a significantly lower stability and homogeneity. Recorded T1 maps revealed marked creaming of oil droplets in almost all of the emulsions with SDS. The spectral analysis showed several additional signals for polysorbate and SDS. However, lecithin remained invisible in 1H-MRS. Relaxometry and DWI revealed different influences of the emulsifiers on water: Polysorbate and SDS showed only minor effects on relaxation times and ADC values of aqueous solutions, whereas lecithin showed a strong decrease in both relaxation times (r1,lecithin = 0.11 wt.%-1 s-1, r2,lecithin = 0.57 wt.%-1 s-1) and ADC value (Δ(ADC)lecithin = - 0.18 × 10-3 mm2/sâ wt.%) with increasing concentration. CONCLUSION: Lecithin is suggested as the preferred emulsifier of oil-in-water emulsions in MRI as it shows a high stabilizing ability and remains invisible in MRI experiments. In addition, lecithin is suitable as an alternative means of adjusting relaxation times and ADC values of water.
Assuntos
Lecitinas , Polissorbatos , Emulsificantes , Emulsões , Imageamento por Ressonância Magnética , Tamanho da Partícula , ÁguaRESUMO
The objective of this study is to conduct a qualitative and a quantitative image quality and lesion evaluation in patients undergoing MR-guided radiation therapy (MRgRT) for prostate cancer on a hybrid magnetic resonance imaging and linear accelerator system (MR-Linac or MRL) at 1.5 Tesla. This prospective study was approved by the institutional review board. A total of 13 consecutive patients with biopsy-confirmed prostate cancer and an indication for MRgRT were included. Prior to radiation therapy, each patient underwent an MR-examination on an MRL and on a standard MRI scanner at 3 Tesla (MRI3T). Three readers (two radiologists and a radiation oncologist) conducted an independent qualitative and quantitative analysis of T2-weighted (T2w) and diffusion-weighted images (DWI). Qualitative outcome measures were as follows: zonal anatomy, capsule demarcation, resolution, visibility of the seminal vesicles, geometric distortion, artifacts, overall image quality, lesion conspicuity, and diagnostic confidence. All ratings were performed on an ordinal 4-point Likert scale. Lesion conspicuity and diagnostic confidence were firstly analyzed only on MRL. Afterwards, these outcome parameters were analyzed in consensus with the MRI3T. Quantitative outcome measures were as follows: anteroposterior and right left diameter of the prostate, lesion size, PI-RADS score (Prostate Imaging-Reporting and Data System) and apparent diffusion coefficient (ADC) of the lesions. Intergroup comparisons were computed using the Wilcoxon-sign rank test and t tests. A post-hoc regression analysis was computed for lesion evaluation. Finally, inter-/intra-reader agreement was analyzed using the Fleiss kappa and intraclass correlation coefficient. For T2w images, the MRL showed good results across all quality criteria (median 3 and 4). Furthermore, there were no significant differences between MRL and MRI3T regarding capsule demarcation or geometric distortion. For the DWI, the MRL performed significantly less than MRI3T across most image quality criteria with a median ranging between 2 and 3. However, there were no significant differences between MRL and MRI3T regarding geometric distortion. In terms of lesion conspicuity and diagnostic confidence, inter-reader agreement was fair for MRL alone (Kappa = 0.42) and good for MRL in consensus with MRI3T (Kappa = 0.708). Thus, lesion conspicuity and diagnostic confidence could be significantly improved when reading MRL images in consensus with MRI3T (Odds ratio: 9- to 11-fold for the T2w images and 5- to 8-fold for the DWI) (p < 0.001). For measures of lesion size, anterior-posterior and right-left prostate diameter, inter-reader and intersequence agreement were excellent (ICC > 0.90) and there were no significant differences between MRL and MRI3T among all three readers. In terms of Prostate Imaging Reporting and Data System (PIRADS) scoring, no significant differences were observed between MRL and MRI3T. Finally, there was a significant positive linear relationship between lesion ADC measurements (r = 0.76, p < 0.01) between the ADC values measured on both systems. In conclusion, image quality for T2w was comparable and diagnostic even without administration of spasmolytic- or contrast agents, while DWI images did not reach diagnostic level and need to be optimized for further exploitation in the setting of MRgRT. Diagnostic confidence and lesion conspicuity were significantly improved by reading MRL in consensus with MRI3T which would be advisable for a safe planning and treatment workflow. Finally, ADC measurements of lesions on both systems were comparable indicating that, lesion ADC as measured on the MRL could be used as a biomarker for evaluation of treatment response, similar to examinations using MRI3T.