Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 23(1): 143, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38773442

RESUMO

BACKGROUND: Zymomonas mobilis is well known for its outstanding ability to produce ethanol with both high specific productivity and with high yield close to the theoretical maximum. The key enzyme in the ethanol production pathway is the pyruvate decarboxylase (PDC) which is converting pyruvate to acetaldehyde. Since it is widely considered that its gene pdc is essential, metabolic engineering strategies aiming to produce other compounds derived from pyruvate need to find ways to reduce PDC activity. RESULTS: Here, we present a new platform strain (sGB027) of Z. mobilis in which the native promoter of pdc was replaced with the IPTG-inducible PT7A1, allowing for a controllable expression of pdc. Expression of lactate dehydrogenase from E. coli in sGB027 allowed the production of D-lactate with, to the best of our knowledge, the highest reported specific productivity of any microbial lactate producer as well as with the highest reported lactate yield for Z. mobilis so far. Additionally, by expressing the L-alanine dehydrogenase of Geobacillus stearothermophilus in sGB027 we produced L-alanine, further demonstrating the potential of sGB027 as a base for the production of compounds other than ethanol. CONCLUSION: We demonstrated that our new platform strain can be an excellent starting point for the efficient production of various compounds derived from pyruvate with Z. mobilis and can thus enhance the establishment of this organism as a workhorse for biotechnological production processes.


Assuntos
Escherichia coli , Etanol , Ácido Láctico , Engenharia Metabólica , Piruvato Descarboxilase , Zymomonas , Zymomonas/metabolismo , Zymomonas/genética , Piruvato Descarboxilase/metabolismo , Piruvato Descarboxilase/genética , Engenharia Metabólica/métodos , Etanol/metabolismo , Ácido Láctico/metabolismo , Ácido Láctico/biossíntese , Escherichia coli/metabolismo , Escherichia coli/genética , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase/genética , Alanina/metabolismo , Ácido Pirúvico/metabolismo , Fermentação
2.
ACS Synth Biol ; 11(11): 3855-3864, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36346889

RESUMO

Zymomonas mobilis is a microorganism with extremely high sugar consumption and ethanol production rates and is generally considered to hold great potential for biotechnological applications. However, its genetic engineering is still difficult, hampering the efficient construction of genetically modified strains. In this work, we present Zymo-Parts, a modular toolbox based on Golden-Gate cloning offering a collection of promoters (including native, inducible, and synthetic constitutive promoters of varying strength), an array of terminators and several synthetic ribosomal binding sites and reporter genes. All these parts can be combined in an efficient and flexible way to achieve a desired level of gene expression, either from plasmids or via genome integration. Use of the GoldenBraid-based system also enables an assembly of operons consisting of up to five genes. We present the basic structure of the Zymo-Parts cloning system, characterize several constitutive and inducible promoters, and exemplify the construction of an operon and of chromosomal integration of a reporter gene. Finally, we demonstrate the power and utility of the Zymo-Parts toolbox for metabolic engineering applications by overexpressing a heterologous gene encoding for the lactate dehydrogenase of Escherichia coli to achieve different levels of lactate production in Z. mobilis.


Assuntos
Zymomonas , Zymomonas/genética , Zymomonas/metabolismo , Plasmídeos/genética , Engenharia Metabólica , Escherichia coli/genética , Clonagem Molecular , Expressão Gênica/genética
3.
Methods Mol Biol ; 1852: 127-141, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30109629

RESUMO

Corynebacterium glutamicum is a workhorse of industrial amino acid production employed for more than five decades for the million-ton-scale production of L-glutamate and L-lysine. This bacterium is pigmented due to the biosynthesis of the carotenoid decaprenoxanthin. Decaprenoxanthin is a carotenoid with 50 carbon atoms, and, thus, C. glutamicum belongs to the rare group of bacteria that produce long-chain C50 carotenoids. C50 carotenoids have been mainly isolated from extremely halophilic archaea (Kelly and Jensen, Acta Chem Scand 21:2578, 1967; Pfander, Pure Appl Chem 66:2369-2374, 1994) and from Gram-positive bacteria of the order Actinomycetales (Netzer et al., J Bacteriol 192:5688-5699, 2010). The characteristic yellow phenotype of C. glutamicum is due to the cyclic C50 carotenoid decaprenoxanthin and its glycosides. Decaprenoxanthin production has been improved by plasmid-borne overexpression of endogenous genes of carotenogenesis. Gene deletion resulted in the production of the C40 carotenoid lycopene, an intermediate of decaprenoxanthin biosynthesis. Heterologous gene expression was required to develop strains overproducing nonnative carotenoids and terpenes, such as astaxanthin (Henke et al., Mar Drugs 14:E124, 2016) and (+)-valencene (Frohwitter et al., J Biotechnol 191:205-213, 2014). Integration of additional copies of endogenous genes expressed from strong promoters improved isoprenoid biosynthesis. Here, we describe C. glutamicum strains, plasmids, and methods for overexpression of endogenous and heterologous genes, gene deletion, replacement, and genomic integration. Moreover, strain cultivation as well as extraction, identification, and quantitative determination of terpenes and carotenoids produced by C. glutamicum is detailed.


Assuntos
Carotenoides/biossíntese , Corynebacterium glutamicum/metabolismo , Engenharia Metabólica , Carotenoides/química , Carotenoides/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Corynebacterium glutamicum/genética , Cromatografia Gasosa-Espectrometria de Massas , Deleção de Genes , Engenharia Genética , Genômica/métodos , Extração Líquido-Líquido , Engenharia Metabólica/métodos , Terpenos/química , Terpenos/isolamento & purificação , Terpenos/metabolismo , Transformação Genética , Xantofilas
4.
Genes (Basel) ; 9(4)2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-29673223

RESUMO

Patchoulol is a sesquiterpene alcohol and an important natural product for the perfume industry. Corynebacterium glutamicum is the prominent host for the fermentative production of amino acids with an average annual production volume of ~6 million tons. Due to its robustness and well established large-scale fermentation, C. glutamicum has been engineered for the production of a number of value-added compounds including terpenoids. Both C40 and C50 carotenoids, including the industrially relevant astaxanthin, and short-chain terpenes such as the sesquiterpene valencene can be produced with this organism. In this study, systematic metabolic engineering enabled construction of a patchoulol producing C. glutamicum strain by applying the following strategies: (i) construction of a farnesyl pyrophosphate-producing platform strain by combining genomic deletions with heterologous expression of ispA from Escherichia coli; (ii) prevention of carotenoid-like byproduct formation; (iii) overproduction of limiting enzymes from the 2-c-methyl-d-erythritol 4-phosphate (MEP)-pathway to increase precursor supply; and (iv) heterologous expression of the plant patchoulol synthase gene PcPS from Pogostemon cablin. Additionally, a proof of principle liter-scale fermentation with a two-phase organic overlay-culture medium system for terpenoid capture was performed. To the best of our knowledge, the patchoulol titers demonstrated here are the highest reported to date with up to 60 mg L−1 and volumetric productivities of up to 18 mg L−1 d−1.

5.
Appl Environ Microbiol ; 82(20): 6141-6149, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27520809

RESUMO

Precise control of microbial gene expression resulting in a defined, fast, and homogeneous response is of utmost importance for synthetic bio(techno)logical applications. However, even broadly applied biotechnological workhorses, such as Corynebacterium glutamicum, for which induction of recombinant gene expression commonly relies on the addition of appropriate inducer molecules, perform moderately in this respect. Light offers an alternative to accurately control gene expression, as it allows for simple triggering in a noninvasive fashion with unprecedented spatiotemporal resolution. Thus, optogenetic switches are promising tools to improve the controllability of existing gene expression systems. In this regard, photocaged inducers, whose activities are initially inhibited by light-removable protection groups, represent one of the most valuable photoswitches for microbial gene expression. Here, we report on the evaluation of photocaged isopropyl-ß-d-thiogalactopyranoside (IPTG) as a light-responsive control element for the frequently applied tac-based expression module in C. glutamicum In contrast to conventional IPTG, the photocaged inducer mediates a tightly controlled, strong, and homogeneous expression response upon short exposure to UV-A light. To further demonstrate the unique potential of photocaged IPTG for the optimization of production processes in C. glutamicum, the optogenetic switch was finally used to improve biosynthesis of the growth-inhibiting sesquiterpene (+)-valencene, a flavoring agent and aroma compound precursor in food industry. The variation in light intensity as well as the time point of light induction proved crucial for efficient production of this toxic compound. IMPORTANCE: Optogenetic tools are light-responsive modules that allow for a simple triggering of cellular functions with unprecedented spatiotemporal resolution and in a noninvasive fashion. Specifically, light-controlled gene expression exhibits an enormous potential for various synthetic bio(techno)logical purposes. Before our study, poor inducibility, together with phenotypic heterogeneity, was reported for the IPTG-mediated induction of lac-based gene expression in Corynebacterium glutamicum By applying photocaged IPTG as a synthetic inducer, however, these drawbacks could be almost completely abolished. Especially for increasing numbers of parallelized expression cultures, noninvasive and spatiotemporal light induction qualifies for a precise, homogeneous, and thus higher-order control to fully automatize or optimize future biotechnological applications.


Assuntos
Corynebacterium glutamicum/metabolismo , Corynebacterium glutamicum/efeitos da radiação , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Isopropiltiogalactosídeo/metabolismo , Regiões Promotoras Genéticas/efeitos da radiação , Sesquiterpenos/metabolismo , Corynebacterium glutamicum/genética , Sesquiterpenos/química , Raios Ultravioleta
6.
J Biotechnol ; 191: 205-13, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24910970

RESUMO

The sesquiterpene (+)-valencene is an aroma compound of citrus fruits and is used to flavor foods and drinks. Biosynthesis of (+)-valencene starts from farnesyl pyrophosphate, an intermediate of carotenoid biosynthesis. Corynebacterium glutamicum, the workhorse of the million-ton scale amino acid industry, is naturally pigmented as it synthesizes the rare fifty carbon atoms (C50) containing carotenoid decaprenoxanthin. Since the carotenoid pathway of this Gram-positive bacterium has previously been engineered for efficient production of several C50 and C40 carotenoids, its potential to produce a sesquiterpene was assessed. Growth of C. glutamicum was negatively affected by (+)-valencene, but overlaying n-dodecane as organic phase for extraction of (+)-valencene was shown to be biocompatible. Heterologous expression of the (+)-valencene synthase gene from the sweet orange Citrus sinensis was not sufficient to enable (+)-valencene production, likely because provision of farnesyl pyrophosphate (FPP) by endogenous prenyltransferases was too low. However, upon deletion of two endogenous prenyltransferase genes and heterologous expression of either FPP synthase gene ispA from Escherichia coli or ERG20 from Saccharomyces cerevisiae (+)-valence production by C. sinensis valencene synthase was observed. Employing the valencene synthase from Nootka cypress improved (+)-valencene titers 10 fold to 2.41±0.26mgl(-1) (+)-valencene, which is equivalent to 0.25±0.03mgg(-1) cell dry weight (CDW). This is the first report on sesquiterpene overproduction by recombinant C. glutamicum.


Assuntos
Carotenoides/biossíntese , Corynebacterium glutamicum/genética , Engenharia Metabólica , Sesquiterpenos/metabolismo , Alcanos/metabolismo , Sequência de Aminoácidos/genética , Carotenoides/genética , Citrus/química , Corynebacterium glutamicum/enzimologia , Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Geraniltranstransferase , Fosfatos de Poli-Isoprenil/biossíntese , Fosfatos de Poli-Isoprenil/metabolismo , Alinhamento de Sequência , Sesquiterpenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...