Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044442

RESUMO

Plants delicately regulate endogenous auxin levels through the coordination of transport, biosynthesis, and inactivation, which is crucial for growth and development. While it is well-established that the actin cytoskeleton can regulate auxin levels by affecting polar transport, its potential role in auxin biosynthesis has remained largely unexplored. Using LC-MS/MS-based methods combined with fluorescent auxin marker detection, we observed a significant increase in root auxin levels upon deletion of the actin bundling proteins AtFIM4 and AtFIM5. Fluorescent observation, immunoblotting analysis, and biochemical approaches revealed that AtFIM4 and AtFIM5 affect the protein abundance of the key auxin synthesis enzyme YUC8 in roots. AtFIM4 and AtFIM5 regulate the auxin synthesis enzyme YUC8 at the protein level, with its degradation mediated by the 26S proteasome. This regulation modulates auxin synthesis and endogenous auxin levels in roots, consequently impacting root development. Based on these findings, we propose a molecular pathway centered on the 'actin cytoskeleton-26S proteasome-YUC8-auxin' axis that controls auxin levels. Our findings shed light on a new pathway through which plants regulate auxin synthesis. Moreover, this study illuminates a newfound role of the actin cytoskeleton in regulating plant growth and development, particularly through its involvement in maintaining protein homeostasis via the 26S proteasome.

2.
Environ Pollut ; 341: 122969, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37989408

RESUMO

Hexi Corridor is one of the most important base of vegetable producing areas in China. Livestock manure (LM) applied to agricultural field could lead to soil heavy metal (HM) pollution. Previous studies have focused on HM pollution following LM application in acidic polluted soils; however, fewer studies have been conducted in alkaline unpolluted soils. A 4-year field vegetable production experiment was conducted using pig manure (PM) and chicken manure (CM) at five application rates (0, 15, 30, 45, and 60 t ha-1) to elucidate potential risks of HMs in an alkaline unpolluted soil in the Hexi Corridor oasis agricultural area and HM uptake by Chinese cabbage. The results showed that LM application caused a significant build-up of Cu, Zn, Pb, Cd, and Ni content in topsoil by 30.6-99.7%, 11.4-51.7%, 1.4-31.3%, 5.6-44.9%, 14%-40.8%, respectively. The Cd, Cu, Zn could potentially exceed the soil threshold in next 8-65 years after 15-60 t ha-1 LM application. Under LM treatment, the soil DTPA-extractable Cu, Zn, Fe, the acid-extractable fraction of Cu, Zn, Fe, Cd, Ni, and the Oxidable fraction of Cu, Zn, Fe, Mn, Cd, Ni significantly increased, but the DTPA-extractable Pb, Cd, the acid-extractable fraction of Pb, and the reducible fraction of Cd significantly decreased. Cu and Zn could migrate to the deeper soil and relatively increase in DTPA-extracted Cu, Zn were found in 20-40 cm soil depth after LM application. The pH and SOM could influence the bioavailability of HMs in soil. The bioaccumulation factor and transfer factor (TF) values were <1 except Mn (TF > 1). HMs in leaf did not approach the threshold for HM toxicity due to the "dilution effect". Recommend the type of manure was the PM and the annual PM application rate was 30 t ha-1 to ensure a 20-year period of clean production in alkaline unpolluted Fluvo-aqiuc vegetable soils.


Assuntos
Brassica , Metais Pesados , Poluentes do Solo , Suínos , Animais , Solo/química , Esterco/análise , Gado , Cádmio , Disponibilidade Biológica , Chumbo , Poluentes do Solo/análise , Metais Pesados/análise , Verduras , China , Ácidos , Ácido Pentético
3.
Mol Plant ; 15(5): 805-819, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35063662

RESUMO

Magnesium (Mg2+), an essential structural component of chlorophyll, is absorbed from the soil by roots and transported to shoots to support photosynthesis in plants. However, the molecular mechanisms underlying root-to-shoot Mg2+ translocation remain largely unknown. We describe here the identification of four plasma membrane (PM)-localized transporters, named Mg2+ release transporters (MGRs), that are critical for root-to-shoot Mg transport in Arabidopsis. Functional complementation assays in a Mg2+-uptake-deficient bacterial strain confirmed that these MGRs conduct Mg2+ transport. PM-localized MGRs (MGR4, MGR5, MGR6, and MGR7) were expressed primarily in root stellar cells and participated in the xylem loading step of the long-distance Mg2+ transport process. In particular, MGR4 and MGR6 played a major role in shoot Mg homeostasis, as their loss-of-function mutants were hypersensitive to low Mg2+ but tolerant to high Mg2+ conditions. Reciprocal grafting analysis further demonstrated that MGR4 functions in the root to determine shoot Mg2+ accumulation and physiological phenotypes caused by both low- and high-Mg2+ stress. Taken together, our study has identified the long-sought transporters responsible for root-to-shoot Mg2+ translocation in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Xilema/metabolismo
4.
Nat Plants ; 8(2): 181-190, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35087208

RESUMO

Magnesium (Mg2+) is an essential nutrient for all life forms. In fungal and plant cells, the majority of Mg2+ is stored in the vacuole but mechanisms for Mg2+ transport into the vacuolar store are not fully understood. Here we demonstrate that members of ancient conserved domain proteins (ACDPs) from Saccharomyces cerevisiae and Arabidopsis thaliana function in vacuolar Mg2+ sequestration that enables plant and yeast cells to cope with high levels of external Mg2+. We show that the yeast genome (as well as other fungal genomes) harbour a single ACDP homologue, referred to as MAM3, that functions specifically in vacuolar Mg2+ accumulation and is essential for tolerance to high Mg. In parallel, vacuolar ACDP homologues were identified from Arabidopsis and shown to complement the yeast mutant mam3Δ. An Arabidopsis mutant lacking one of the vacuolar ACDP homologues displayed hypersensitivity to high-Mg conditions and accumulated less Mg in the vacuole compared with the wild type. Taken together, our results suggest that conserved transporters mediate vacuolar Mg2+ sequestration in fungal and plant cells to maintain cellular Mg2+ homeostasis in response to fluctuating Mg2+ levels in the environment.


Assuntos
Proteínas de Arabidopsis , Saccharomyces cerevisiae , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Magnésio/metabolismo , Mutação , Células Vegetais/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
5.
Mitochondrial DNA B Resour ; 6(8): 2288-2290, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34291163

RESUMO

Murraya exotica L. (Rutaceae) has important horticultural and medicinal values. Here, we reported the complete chloroplast (cp) genome of M. exotica using the next-generation sequencing method. The cp genome is 160,179 bp in length, including a large single-copy region (LSC, 87,726 bp), a small single-copy region (SSC, 18,465 bp), and a pair of inverted repeats (IR) regions 26,994 bp. A maximum-likelihood phylogenomic analysis showed that M. exotica was sister to Murraya paniculate. These findings will provide useful information for further investigation of cp genome evolution in Murraya.

6.
Plant Commun ; 1(1): 100013, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33404541

RESUMO

Membrane transport processes are indispensable for many aspects of plant physiology including mineral nutrition, solute storage, cell metabolism, cell signaling, osmoregulation, cell growth, and stress responses. Completion of genome sequencing in diverse plant species and the development of multiple genomic tools have marked a new era in understanding plant membrane transport at the mechanistic level. Genes coding for a galaxy of pumps, channels, and carriers that facilitate various membrane transport processes have been identified while multiple approaches are developed to dissect the physiological roles as well as to define the transport capacities of these transport systems. Furthermore, signaling networks dictating the membrane transport processes are established to fully understand the regulatory mechanisms. Here, we review recent research progress in the discovery and characterization of the components in plant membrane transport that take advantage of plant genomic resources and other experimental tools. We also provide our perspectives for future studies in the field.


Assuntos
Membrana Celular/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Genética Reversa/métodos , Transporte Biológico , Membrana Celular/genética , Genoma de Planta , Genômica/métodos , Família Multigênica , Proteínas de Plantas/genética , Plantas/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...