Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38611743

RESUMO

Benzene is the typical volatile organic compound (VOC) of indoor and outdoor air pollution, which harms human health and the environment. Due to the stability of their aromatic structure, the catalytic oxidation of benzene rings in an environment without an external energy input is difficult. In this study, the efficient degradation of benzene at room temperature was achieved by constructing Ag and Ni bimetallic active site catalysts (AgNi/BCN) supported on boron-carbon-nitrogen aerogel. The atomic-scale Ag and Ni are uniformly dispersed on the catalyst surface and form Ag/Ni-C/N bonds with C and N, which were conducive to the catalytic oxidation of benzene at room temperature. Further catalytic reaction mechanisms indicate that benzene reacted with ·OH to produce R·, which reacted with O2 to regenerate ·OH. Under the strong oxidation of ·OH, benzene was oxidized to form alcohols, carboxylic acids, and eventually CO2 and H2O. This study not only significantly reduces the energy consumption of VOC catalytic oxidation, but also improves the safety of VOC treatment, providing new ideas for the low energy consumption and green development of VOC treatment.

2.
J Hazard Mater ; 460: 132520, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37703730

RESUMO

Benzene and its aromatic derivatives are typical volatile organic compounds for indoor and outdoor air pollution, harmful to human health and the environment. It has been considered extremely difficult to break down benzene rings at ambient conditions without external energy input, due to the extraordinary stability of the aromatic structure. Here, we show one such solution that can thoroughly degrade benzene to basically water and carbon dioxide at 25 °C in air using atomically dispersed Fe in N-doped porous carbon, with almost 100% benzene conversion. Further experimental studies combined with molecular simulations reveal the mechanism of this catalytic reaction. Hydroxyl radicals (·OH) evolved on the atomically dispersed FeN4O2 catalytic centers were found responsible for initiating and completing the oxidation of benzene. This work provides a new chemistry to degrade aromatics at ambient conditions and also a pathway to generate active ·OH oxidant for generic remediation of organic pollutants.

3.
Zhongguo Dang Dai Er Ke Za Zhi ; 23(12): 1208-1213, 2021 Dec 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-34911602

RESUMO

OBJECTIVES: To study the effect of glucose metabolism disorders on the short-term prognosis in neonates with asphyxia. METHODS: A retrospective analysis was performed on the medical data of the neonates with asphyxia who were admitted to 52 hospitals in Hubei Province of China from January to December, 2018 and had blood glucose data within 12 hours after birth. Their blood glucose data at 1, 2, 6, and 12 hours after birth (with an allowable time error of 0.5 hour) were recorded. According to the presence or absence of brain injury and/or death during hospitalization, the neonates were divided into a poor prognosis group with 693 neonates and a good prognosis group with 779 neonates. The two groups were compared in the incidence of glucose metabolism disorders within 12 hours after birth and short-term prognosis. RESULTS: Compared with the good prognosis group, the poor prognosis group had a significantly higher proportion of neonates from secondary hospitals (48.5% vs 42.6%, P<0.05) or with severe asphyxia (19.8% vs 8.1%, P<0.05) or hypothermia therapy (4.8% vs 1.5%, P<0.05), as well as a significantly higher incidence rate of disorder of glucose metabolism (18.8% vs 12.5%, P<0.05). Compared with the good prognosis group, the poor prognosis group had a significantly higher incidence rate of disorder of glucose metabolism at 1, 2, and 6 hours after birth (P<0.05). The multivariate logistic regression analysis showed that recurrent hyperglycemia (adjusted odds ratio=2.380, 95% confidence interval: 1.275-4.442, P<0.05) was an independent risk factor for poor prognosis in neonates with asphyxia. CONCLUSIONS: Recurrent hyperglycemia in neonates with asphyxia may suggest poor short-term prognosis, and it is necessary to strengthen the early monitoring and management of the nervous system in such neonates.


Assuntos
Asfixia Neonatal , Hiperglicemia , Asfixia , Asfixia Neonatal/complicações , Asfixia Neonatal/epidemiologia , Humanos , Recém-Nascido , Prognóstico , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...