Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202409763, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954763

RESUMO

Developing non-platinum group metal catalysts for the sluggish hydrogen oxidation reaction (HOR) is critical for alkaline fuel cells. To date, Ni-based materials are the most promising candidates but still suffer from insufficient performance. Herein, we report an unconventional hcp/fcc Ni (u-hcp/fcc Ni) heteronanocrystal with multiple epitaxial hcp/fcc heterointerfaces and coherent twin boundaries, generating rugged surfaces with plenty of asymmetric convex sites. Systematic analyses discover that such convex sites enable the adsorption of *H in unusual bridge positions with weakened binding energy, circumventing the over-strong *H adsorption on traditional hollow positions, and simultaneously stabilizing interfacial *H2O. It thus synergistically optimizes the HOR thermodynamic process as well as reduces the kinetic barrier of the rate-determining Volmer step. Consequently, the developed u-hcp/fcc Ni exhibits the top-rank alkaline HOR activity with a mass activity of 40.6 mA mgNi-1 (6.3 times higher than fcc Ni control) together with superior stability and high CO-tolerance. These results provide a paradigm for designing high-performance catalysts by shifting the adsorption state of intermediates through configuring surface sites.

2.
Phys Chem Chem Phys ; 26(30): 20684-20689, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39041218

RESUMO

The highly localized Fe d orbital in ion phthalocyanine (FePc)-based molecular catalysts significantly hinders their electrocatalytic nitrogen reduction reaction (eNRR) performance. Herein, we theoretically designed a series of FePc-based molecules with adjacent metal phthalocyanine sites to form an asymmetric delocalized electronic structure on Fe centers, promoting the catalytic activity and lowering the overpotential of the eNRR, as well as suppressing the hydrogen evolution reaction (HER) side reaction.

3.
J Hazard Mater ; 476: 135008, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38943893

RESUMO

Contamination of per- and polyfluoroalkyl substances (PFAS) poses a significant threat to soil ecosystem health, yet there remains a lack of understanding regarding the responses of soil microbial communities to prolonged PFAS exposure in field conditions. This study involved a three-year field investigation to track changes in microbial communities and functions in soil subjected to the contamination of a primary PFAS, perfluorooctanoic acid (PFOA). Results showed that PFOA exposure altered soil bacterial and fungal communities in terms of diversity, composition, and structure. Notably, certain bacterial communities with a delayed reaction to PFOA contamination showed the most significant response after one year of exposure. Fungal communities were sensitive to PFOA in soil, exhibiting significant responses within just four months of exposure. After two years, the impact of PFOA on both bacterial and fungal communities was lessened, likely due to the long-term adaptation of microbial communities to PFOA. Moreover, PFOA exposure notably inhibited alkaline phosphatase activity and reduced certain phosphorus cycling-related functional genes after three years of exposure, suggesting potential disruptions in soil fertility. These new insights advance our understanding of the long-term effects of PFOA on soil microbial communities and functions at a field scale.

4.
Adv Mater ; 36(23): e2310875, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38450765

RESUMO

Photodynamic therapy (PDT) has been approved for clinic. However, powerless efficiency for deep hypoxic tumor therapy remains an enormous challenge for PDT. Herein, a hypoxia-sensitive nanotherapeutic system (FTCD-SRGD) based on fullerene (C70) and anoxic activating chemical prodrug tirapazamine (TPZ) is rationally designed for multimodal therapy of deep hypoxic tumors. To enhance the accumulation and achieve specific drug release in tumor, the FTCD-SRGD is modified with cyclo(Arg-Gly-Asp-d-Phe-Lys) (cRGDfK) peptide and disulfide bonds. With the exacerbated hypoxic microenvironment created by C70 consuming O2 for generating reactive oxygen species (ROS), TPZ is activated to produce toxic radical species to ablate deep tumors, which achieves a synergistic treatment of C70-mediated PDT and hypoxia-enhanced chemotherapy. Additionally, given this hypoxia-sensitive system-induced immunogenic cell death (ICD) activating anticancer cytotoxic T lymphocyte to result in more susceptible tumor to immunotherapy, FTCD-SRGD plus immune checkpoint inhibitor (anti-PD-L1) fully inhibit deep hypoxic tumors by promoting infiltration of effector T cells in tumors. Collectively, it is the first time to develop a multimodal therapy system with fullerene-based hypoxia-sensitive PS for deep tumors. The powerful multimodal nanotherapeutic system for combining hypoxia-enhanced PDT and immunotherapy to massacre deep hypoxic tumors can provide a paradigm to combat the present bottleneck of tumor therapy.


Assuntos
Fulerenos , Fotoquimioterapia , Fármacos Fotossensibilizantes , Tirapazamina , Fulerenos/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Animais , Fotoquimioterapia/métodos , Camundongos , Linhagem Celular Tumoral , Tirapazamina/química , Tirapazamina/farmacologia , Humanos , Terapia Combinada , Microambiente Tumoral/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Neoplasias/patologia , Hipóxia Tumoral/efeitos dos fármacos , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
5.
Neural Regen Res ; 19(11): 2499-2512, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38526286

RESUMO

JOURNAL/nrgr/04.03/01300535-202419110-00030/figure1/v/2024-03-08T184507Z/r/image-tiff The inflammatory microenvironment and neurotoxicity can hinder neuronal regeneration and functional recovery after spinal cord injury. Ruxolitinib, a JAK-STAT inhibitor, exhibits effectiveness in autoimmune diseases, arthritis, and managing inflammatory cytokine storms. Although studies have shown the neuroprotective potential of ruxolitinib in neurological trauma, the exact mechanism by which it enhances functional recovery after spinal cord injury, particularly its effect on astrocytes, remains unclear. To address this gap, we established a mouse model of T10 spinal cord contusion and found that ruxolitinib effectively improved hindlimb motor function and reduced the area of spinal cord injury. Transcriptome sequencing analysis showed that ruxolitinib alleviated inflammation and immune response after spinal cord injury, restored EAAT2 expression, reduced glutamate levels, and alleviated excitatory toxicity. Furthermore, ruxolitinib inhibited the phosphorylation of JAK2 and STAT3 in the injured spinal cord and decreased the phosphorylation level of nuclear factor kappa-B and the expression of inflammatory factors interleukin-1ß, interleukin-6, and tumor necrosis factor-α. Additionally, in glutamate-induced excitotoxicity astrocytes, ruxolitinib restored EAAT2 expression and increased glutamate uptake by inhibiting the activation of STAT3, thereby reducing glutamate-induced neurotoxicity, calcium influx, oxidative stress, and cell apoptosis, and increasing the complexity of dendritic branching. Collectively, these results indicate that ruxolitinib restores glutamate homeostasis by rescuing the expression of EAAT2 in astrocytes, reduces neurotoxicity, and effectively alleviates inflammatory and immune responses after spinal cord injury, thereby promoting functional recovery after spinal cord injury.

6.
Angew Chem Int Ed Engl ; 63(10): e202318591, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38230583

RESUMO

The thermally stable inorganic cesium-based perovskites promise efficient and stable photovoltaics. Unfortunately, the strong ionic bonds lead to uncontrollable rapid crystallization, making it difficult in fabricating large-area black-phase film for photovoltaics. Herein, we developed a facile hydrogen-bonding assisted strategy for modulating the crystallization of CsPbI2 Br to achieve uniform large-area phase-pure films with much-reduced defects. The simple addition of methylamine acetate in precursors not only promotes the formation of intermediate phase via hydrogen bonding to circumvent the direct crystallization of CsPbI2 Br from ionic precursors but also widens the film processing window, thus enabling to fabricate large-area high-quality phase-pure CsPbI2 Br film under benign conditions. Combining with stable dopant-free poly(3-hexylthiophene), the CsPbI2 Br solar cells achieve the record-high efficiencies of 18.14 % and 16.46 % for 0.1 cm2 and 1 cm2 active area, respectively. The obtained high efficiency of 38.24 % under 1000 lux illumination suggests its potential in indoor photovoltaics for powering the Internet of Things, etc.

7.
Small Methods ; 8(1): e2300957, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37802971

RESUMO

Electrochemically converting CO2 back into fuels and chemicals is promising in alleviating the greenhouse effect worldwide. Various high-efficiency catalysts have been achieved, yet the unsatisfied structural stability under CO2 electrolysis conditions restricts their practical application. Herein, a sub-5 nm sized CuInS2 quantum dots (CIS-QDs) based electrocatalyst for converting CO2 into CO are developed. Taking advantage of the stable M─Ch (metal-chalcogenide) covalent bonds, and unique p-block metal properties, the as-prepared catalyst exhibits excellent structural stability under large overpotentials and can achieve a high CO Faradaic efficiency (FE) of 86% (total CO2 reduction FE of 89%) at -0.65 V versus reversible hydrogen electrode with long-term durability of 40 h and outstanding current densities of 10.6 mA cm-2 simultaneously. Furthermore, detailed electrochemical analyses revealed that the excellent performance of the as-prepared catalysts shall be attributed to the high-density active sites and fast charge transfer brought by the ultrasmall size of CIS-QDs. This work provides insights into the design of high-density and stable catalytic sites for developing high-performance electrocatalysts.

8.
iScience ; 26(7): 107009, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37534157

RESUMO

Electrocatalytic CO2 reduction technology has been considered a promising approach to alleviate the severe environmental and energy issues caused by the anthropogenic over-emission of CO2. Coupling CO2 reduction with nitrogen (N)-pollutants reduction from wastewater to produce higher valued products (e.g., urea, amide, amine, etc.) could significantly extend the application scenarios and product categories of CO2 reduction technologies. This paper investigates the available CO2 and N-pollutants sources and summarizes the recent progress of electrocatalytic C-N coupling reactions. Based on the fundamental research, technical concerns for scale-up applications of C-N coupling electrocatalysis are thoroughly discussed. Finally, we prospect the opportunities and challenges with an in-depth understanding of the underlying dominant factors in applying C-N coupling electrocatalysis. Further development in recycling CO2 and N pollutants via the electrocatalytic C-N coupling process is also discussed.

9.
Adv Mater ; 35(51): e2304414, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37515580

RESUMO

Structural engineering of nanomaterials offers a promising way for developing high-performance catalysts toward catalysis. However, the delicate modulation of thermodynamically unfavorable nanostructures with unconventional phases still remains a challenge. Here, the synthesis of hierarchical AuCu nanostructures is reported with hexagonal close-packed (2H-type)/face-centered cubic (fcc) heterophase, high-index facets, planar defects (e.g., stacking faults, twin boundaries, and grain boundaries), and tunable Cu content. The obtained 2H/fcc Au99 Cu1 hierarchical nanosheets exhibit excellent performance for the electrocatalytic CO2 reduction to produce CO, outperforming the 2H/fcc Au91 Cu9 and fcc Au99 Cu1 . The experimental results, especially those obtained by in-situ differential electrochemical mass spectroscopy and attenuated total reflection Fourier-transform infrared spectroscopy, suggest that the enhanced catalytic performance of 2H/fcc Au99 Cu1 arises from the unconventional 2H/fcc heterophase, high-index facets, planar defects, and appropriate alloying of Cu. Impressively, the 2H/fcc Au99 Cu1 shows CO Faradaic efficiencies of 96.6% and 92.6% at industrial current densities of 300 and 500 mA cm-2 , respectively, as well as good durability, placing it among the best CO2 reduction electrocatalysts for CO production. The atomically structural regulation based on phase engineering of nanomaterials (PEN) provides an avenue for the rational design and preparation of high-performance electrocatalysts for various catalytic applications.

10.
J Am Chem Soc ; 145(25): 13805-13815, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37317527

RESUMO

The alkaline hydrogen oxidation reaction (HOR) involves the coupling of adsorbed hydrogen (Had) and hydroxyl (OHad) species and is thus orders of magnitude slower than that in acid media. According to the Sabatier principle, developing electrocatalysts with appropriate binding energy for both intermediates is vital to accelerating the HOR though it is still challenging. Herein, we propose an unconventional bilateral compressive strained Ni-Ir interface (Ni-Ir(BCS)) as efficient synergistic HOR sites. Density functional theory (DFT) simulations reveal that the bilateral compressive strain effect leads to the appropriate adsorption for both Had and OHad, enabling their coupling thermodynamically spontaneous and kinetically preferential. Such Ni-Ir(BCS) is experimentally achieved by embedding sub-nanometer Ir clusters in graphene-loaded high-density Ni nanocrystals (Ni-Ir(BCS)/G). As predicted, it exhibits a HOR mass activity of 7.95 and 2.88 times those of commercial Ir/C and Pt/C together with much enhanced CO tolerance, respectively, ranking among the most active state-of-the-art HOR catalysts. These results provide new insights into the rational design of advanced electrocatalysts involving coordinated adsorption and activation of multiple reactants.

11.
Natl Sci Rev ; 10(4): nwac248, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37180356

RESUMO

Electrochemical CO2 reduction (ECR) to high-value multi-carbon (C2+) products is critical to sustainable energy conversion, yet the high energy barrier of C-C coupling causes catalysts to suffer high overpotential and low selectivity toward specific liquid C2+ products. Here, the electronically asymmetric Cu-Cu/Cu-N-C (Cu/CuNC) interface site is found, by theoretical calculations, to enhance the adsorption of *CO intermediates and decrease the reaction barrier of C-C coupling in ECR, enabling efficient C-C coupling at low overpotential. The catalyst consisting of high-density Cu/CuNC interface sites (noted as ER-Cu/CuNC) is then accordingly designed and constructed in situ on the high-loading Cu-N-C single atomic catalysts. Systematical experiments corroborate the theoretical prediction that the ER-Cu/CuNC boosts electrocatalytic CO2-to-ethanol conversion with a Faradaic efficiency toward C2+ of 60.3% (FEethanol of 55%) at a low overpotential of -0.35 V. These findings provide new insights and an attractive approach to creating electronically asymmetric dual sites for efficient conversion of CO2 to C2+ products.

12.
iScience ; 26(4): 106407, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37020967

RESUMO

An electrochemical approach for ammonia production is successfully developed by coupling the anodic dinitrogen oxidation reaction (NOR) and cathodic hydrogen evolution reaction (HER) within a well-designed membraneless flow electrolyzer. The obtained reactor shows the preferential yield of ammonia over nitrogen oxides on the vanadium nitride catalyst surface. At an applied oxidation potential of 2.25 V versus the reversible hydrogen electrode (vs RHE), a promoted ammonia production rate and Faradaic efficiency (FE) were obtained with 9.9 mmol g-1 h-1 (0.029 mmol cm-2 h-1) and 4.8%, respectively. Besides, the negative affection of ammonia contamination is efficiently alleviated. Density functional theory calculations revealed that the thermodynamic energy needed to produce ammonia (-0.63 eV) is far lower than that of producing nitrogen oxide (0.96 eV) from hydrogenated nitrogen oxides [∗N2OH] splitting, confirming the coupling of NOR and HER.

13.
ACS Appl Mater Interfaces ; 15(13): 16673-16679, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36961885

RESUMO

The electrochemical carbon-dioxide reduction reaction (CO2RR) to high-value multi-carbon (C2+) chemicals provides a hopeful approach to store renewable energy and close the carbon cycle. Although copper-based catalysts with a porous architecture are considered potential electrocatalysts for CO2 reduction to C2+ chemicals, challenges remain in achieving high selectivity and partial current density simultaneously for practical application. Here, the porous Cu catalysts with a cavity structure by in situ electrochemical-reducing Cu2O cavities are developed for high-performance conversion of CO2 to C2+ fuels. The as-described catalysts exhibit a high C2+ Faradaic efficiency and partial current density of 75.6 ± 1.8% and 605 ± 14 mA cm-2, respectively, at a low applied potential (-0.59 V vs RHE) in a microfluidic flow cell. Furthermore, in situ Raman tests and finite element simulation indicated that the cavity structure can enrich the local concentration of CO intermediates, thus promoting the C-C coupling process. More importantly, the C-C coupling should be major through the *CO-*CHO pathway as demonstrated by the electrochemical Raman spectra and density functional theory calculations. This work can provide ideas and insights into designing high-performance electrocatalysts for producing C2+ compounds and highlight the important effect of in situ characterization for uncovering the reaction mechanism.

14.
J Hazard Mater ; 443(Pt B): 130392, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36444074

RESUMO

Understanding the fate and transport of perfluorooctanoic acid (PFOA) in soil and groundwater is essential to reliable assessments of its risks. This study investigated the impacts of Gram-positive Bacillus subtilis (BS), Gram-negative Pseudomonas aeruginosa (PA) and wild microbiota (WM) biofilm on the transport of PFOA in saturated sand columns at two ionic strengths (i.e., 1.0 and 20.0 mM NaCl). The retention of PFOA in biofilm-coated sand columns was higher than that in uncoated sand columns, due to biofilm-induced reinforced hydrophobic interactions and surface roughness, and decreased zeta potential. However, the retention effects varied among biofilm bacterial species with PFOA retardation factors in PA, WM and BS columns of 1.29-1.38, 1.21-1.29 and 1.11-1.15, respectively. Notably, PA biofilm had the most pronounced effect on PFOA retention. While increasing ionic strength promoted the retention of PFOA in BS biofilm-coated sand, it had no significant impact on PFOA transport in PA and WM biofilm-coated sand. This could be attributed to the differences in biofilm composition, deviating the ionic strengths effects on electrostatic double layer compression. The advection dispersion equation coupled with two-site kinetic retention model well described the transport of PFOA in all saturated columns. Our findings reveal that biofilm plays important roles in PFOA transport in porous media, instructive for risk assessment and remediation of PFOA contamination.


Assuntos
Caprilatos , Areia , Porosidade , Biofilmes , Bacillus subtilis
15.
Chem Sci ; 13(44): 13172-13177, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36425499

RESUMO

Electrocatalytic CO2 reduction driven by renewable energy has become a promising approach to rebalance the carbon cycle. Atomically dispersed transition metals anchored on N-doped carbon supports (M-N-C) have been considered as the most attractive catalysts to catalyze CO2 to CO. However, the sluggish kinetics of M-N-C limits the large-scale application of this type of catalyst. Here, it is found that the introduction of single atomic Mn-N auxiliary sites could effectively buffer the locally generated OH- on the catalytic interface of the single-atomic Ni-N-C sites, thus accelerating proton-coupled electron transfer (PCET) steps to enhance the CO2 electroreduction to CO. The constructed diatomic Ni/Mn-N-C catalysts show a CO faradaic efficiency of 96.6% and partial CO current density of 13.3 mA cm-2 at -0.76 V vs. RHE, outperforming that of monometallic single-atomic Ni-N-C or Mn-N-C counterparts. The results suggest that constructing synergistic catalytic sites to regulate the surface local microenvironment might be an attractive strategy for boosting CO2 electroreduction to value-added products.

16.
J Am Chem Soc ; 144(43): 20126-20133, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36259686

RESUMO

We report herein the in situ electrochemical scanning tunneling microscopy (ECSTM) study on the synergistic effect of Mg2+ in CO2 reduction reaction (CO2RR) catalyzed by cobalt phthalocyanine (CoPc). ECSTM measurement molecularly resolves the self-assembled CoPc monolayer on the Au(111) substrate. In the CO2 environment, high-contrast species are observed in the adlayer and assigned to the CO2 adsorption on CoPc. Furthermore, the contrast of the CO2-bound complex is higher in Mg2+-containing electrolytes than in Mg2+-free electrolytes, indicating the formation of the CoPc-CO2-Mg2+ complex. The surface coverage of adsorbed CO2 is positively correlated with the Mg2+ concentration as the additive in electrolytes up to a plateau of 30.8 ± 2.7% when c(Mg2+) > 30 mM. The potential step experiment indicates the higher CO2 adsorption dynamics in Mg2+-containing electrolytes than without Mg2+. The rate constants of CO2 adsorption and dissociation in different electrolytes are extracted from the data fitting of statistical results from in situ ECSTM experiments.


Assuntos
Microscopia de Tunelamento , Compostos Organometálicos , Microscopia de Tunelamento/métodos , Dióxido de Carbono , Ouro
17.
Nanoscale ; 14(37): 13679-13688, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36093757

RESUMO

Electrochemical reduction of CO2 into liquid fuels is a promising approach to achieving a carbon-neutral energy cycle but remains a great challenge due to the lack of efficient catalysts. Here, the hierarchical architectures assembled by ultrathin and porous S-modified Cu nanoflakes (Cu-S NFs) are designed and constructed as an efficient electrocatalyst for CO2 conversion to formate with high partial current density. Specifically, when integrated into a gas diffusion electrode in a flow cell, Cu-S NFs are capable of delivering the ultrahigh formate current density up to 404.1 mA cm-2 with a selectivity of 89.8%. Electrochemical tests and theoretical calculations indicate that the superior performance of the designed catalysts may be attributed to the unique structure, which can provide abundant active sites, fast charge transfer, and highly active edge sites.

18.
Adv Mater ; 34(26): e2201114, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35448914

RESUMO

Controlling the architectures and crystal phases of metal@semiconductor heterostructures is very important for modulating their physicochemical properties and enhancing their application performances. Here, a facile one-pot wet-chemical method to synthesize three types of amorphous SnO2 -encapsulated crystalline Cu heterostructures, i.e., hemicapsule, yolk-shell, and core-shell nanostructures, in which unconventional crystal phases (e.g., 2H, 4H, and 6H) and defects (e.g., stacking faults and twin boundaries) are observed in the crystalline Cu cores, is reported. The hemicapsule Cu@SnO2 heterostructures, with voids that not only expose the Cu core with unconventional phases but also retain the interface between Cu and SnO2 , show an excellent electrocatalytic CO2 reduction reaction (CO2 RR) selectivity toward the production of CO and formate with high Faradaic efficiency (FE) above 90% in a wide potential window from -1.05 to -1.55 V (vs reversible hydrogen electrode (RHE)), and the highest FE of CO2 RR (95.3%) is obtained at -1.45 V (vs RHE). This work opens up a new way for the synthesis of new heterostructured nanomaterials with promising catalytic application.

19.
Eco Environ Health ; 1(4): 259-279, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38077253

RESUMO

After the Industrial Revolution, the ever-increasing atmospheric CO2 concentration has resulted in significant problems for human beings. Nearly all countries in the world are actively taking measures to fight for carbon neutrality. In recent years, negative carbon emission technologies have attracted much attention due to their ability to reduce or recycle excess CO2 in the atmosphere. This review summarizes the state-of-the-art negative carbon emission technologies, from the artificial enhancement of natural carbon sink technology to the physical, chemical, or biological methods for carbon capture, as well as CO2 utilization and conversion. Finally, we expound on the challenges and outlook for improving negative carbon emission technology to accelerate the pace of achieving carbon neutrality.

20.
Nat Commun ; 12(1): 586, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500393

RESUMO

Single-atom catalysts (SACs) are promising candidates to catalyze electrochemical CO2 reduction (ECR) due to maximized atomic utilization. However, products are usually limited to CO instead of hydrocarbons or oxygenates due to unfavorable high energy barrier for further electron transfer on synthesized single atom catalytic sites. Here we report a novel partial-carbonization strategy to modify the electronic structures of center atoms on SACs for lowering the overall endothermic energy of key intermediates. A carbon-dots-based SAC margined with unique CuN2O2 sites was synthesized for the first time. The introduction of oxygen ligands brings remarkably high Faradaic efficiency (78%) and selectivity (99% of ECR products) for electrochemical converting CO2 to CH4 with current density of 40 mA·cm-2 in aqueous electrolytes, surpassing most reported SACs which stop at two-electron reduction. Theoretical calculations further revealed that the high selectivity and activity on CuN2O2 active sites are due to the proper elevated CH4 and H2 energy barrier and fine-tuned electronic structure of Cu active sites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...