Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 211: 108695, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744088

RESUMO

The presence of sugar in plant tissue can lead to an increase in the osmotic pressure within cells, a decrease in the freezing point of plants, and protection against ice crystal damage to the tissue. Trehalose is closely related to sucrose, which comprises the largest proportion of sugar and has become a hot topic of research in recent years. Our previous studies have confirmed that a key trehalose synthesis gene, TaTPS11, from the cold-resistant winter wheat DM1, could enhance the cold resistance of plants by increasing sugar content. However, the underlying mechanism behind this phenomenon remains unclear. In this study, we cloned TaTPS11-6D, edited TaTPS11-6D using CRISPR/Cas9 technology and transformed 'Fielder' to obtain T2 generation plants. We screened out OE3-3 and OE8-7 lines with significantly higher cold resistance than that of 'Fielder' and Cri 4-3 edited lines with significantly lower cold resistance than that of 'Fielder'. Low temperature storage limiting factors were measured for OE3-3, OE8-7 and Cri 4-3 treated at different temperatures.The results showed that TaTPS11-6D significantly increased the content of sugar in plants and the transfer of sugar from source to storage organs under cold conditions. The TaTPS11-6D significantly increased the levels of salicylic, jasmonic, and abscisic acids while also significantly decreasing the level of gibberellic acid. Our research improves the model of low temperature storage capacity limiting factor.


Assuntos
Temperatura Baixa , Proteínas de Plantas , Triticum , Triticum/genética , Triticum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regulação da Expressão Gênica de Plantas , Trealose/metabolismo , Ácido Abscísico/metabolismo , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Giberelinas/metabolismo , Sacarose/metabolismo
2.
Gene ; 809: 146030, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34673213

RESUMO

The shoot apex is a region where new cells are produced and elongate. The developmental state of the wheat shoot apex under low temperature affects its cold resistance. In this study, the morphology of shoot apex before overwintering was characterized for 24 wheat line with different winter and spring characteristics. Our research showed that the shoot apex of autumn-sown spring wheat lines reached the temperature sensitive double-ridge stage before overwintering, whereas shoot apex of winter wheat lines are found in temperature-insensitive vegetative or elongation stages. In order to explore how gene expression is associated with shoot apex differentiation in winter and spring wheat, we used strand-specific RNA sequencing to profile the gene expression patterns at four time-points between 14 after germination and 45 days after germination in the winter wheat cultivar Dongnongdongmai No. 1 (DM1) and in the spring wheat cultivar China Spring (CS). We identified 11,848 differentially expressed genes between the two cultivars. Most up-regulated genes in CS were involved in energy metabolism and transport during the seedling stage, whereas up-regulated genes in DM1 were involved in protein and DNA synthesis. MADS-box genes affect plant growth and development. In this study, MADS-boxes with differential expression between CS and DM1 were screened and evolutionary tree analysis was conducted. During all sampling periods, CS highly expressed MADS-box genes that induce flowering promotion genes such as VRN1, VRT and AG, while lowly expressed MADS-box genes that induce flowering-inhibiting homologous genes such as SVP. TaVRN1 composition in DM1 and CS was vrn-A1, vrn-B1, and Vrn-D1b. Analysis of the sequence of TaVRN1 (TraesCS5A01G391700) from DM1 and CS revealed 5 SNP differences in the promoter regions and 3 SNP deletions in the intron regions. The expression levels of cold resistant genes in DM1 were significantly higher than those in CS at seedling stage (neither DM1 nor CS experienced cold in this study), including CBF, cold induced protein,acid desaturase and proline rich proteins. Additionally, the expression levels of auxin-related genes were significantly higher in CS than those in DM1 at 45 days after germination. Our study identified candidate genes associated with the process of differentiation of the shoot apex in winter and spring wheat at the seedling stage and also raised an internal stress tolerance model for winter wheat to endogenously anticipate the coming stressful conditions in winter.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética , Triticum/crescimento & desenvolvimento , Triticum/genética , Temperatura Baixa , Perfilação da Expressão Gênica , Ácidos Indolacéticos/metabolismo , Filogenia , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único , Plântula/genética , Plântula/crescimento & desenvolvimento , Fatores de Transcrição/genética
3.
Gene ; 710: 210-217, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31176733

RESUMO

Low temperature is a key stress factor for the growth and development of wheat (Triticum aestivum L.), and glycometabolism plays an important role in plant cold tolerance. Our previous study identified trehalose 6-phosphate synthase 11 gene (TaTPS11), which had a significantly different expression pattern between a high freezing-tolerant wheat cultivar and a low freezing-tolerant wheat cultivar. In this study, TaTPS11 was isolated from a winter-hardy wheat cultivar (D1) and overexpressed in Arabidopsis thaliana to study its effect on cold tolerance in plants. Transgenic plants expressing TaTPS11 had lower sucrose content, higher starch content, and higher activity of key enzyme (sucrose phosphate synthase, sucrose synthase, and invertase) involved in sucrose metabolism. In addition, the expression level of sucrose non-fermenting 1-related kinase 1 (SnRK1), which catalyzes the sucrose in plants, increased in the TaTPS11-overexpressed plants. These results indicated that heterologous expression of TaTPS11 influenced carbohydrate metabolism in Arabidopsis plants. The resultant plants had a significantly higher survival rate after -5 °C treatment for 2 h and exhibited enhanced cold tolerance without unfavorable phenotypes compared to wild-type. Our findings indicated that manipulation of TaTPS11 improved cold tolerance in plants and TaTPS11 had potential values in wheat cold-tolerance breeding.


Assuntos
Arabidopsis/genética , Resposta ao Choque Frio , Monoéster Fosfórico Hidrolases/genética , Triticum/enzimologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Metabolismo dos Carboidratos , Regulação da Expressão Gênica de Plantas , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/genética , Reação em Cadeia da Polimerase em Tempo Real , Sacarose/metabolismo , Triticum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA