Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(4)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38672522

RESUMO

In this study, we introduce electrospun polydioxanone (PDO) nonwoven fabrics as a platform for the delivery of adeno-associated virus (AAV) vectors for transduction and genome editing by adhering them to organ surfaces, including the heart. AAV vectors were loaded onto the PDO fabrics by soaking the fabrics in a solution containing AAV vectors. In vitro, the amount of AAV vectors loaded onto the fabrics could be adjusted by changing their concentration in the solution, and the number of cells expressing the green fluorescent protein (GFP) encoded by the AAV vectors increased in correlation with the increasing amount of loaded AAV vectors. In vivo, both transduction and genome editing resulted in the observation of GFP expression around AAV vector-loaded PDO fabrics attached to the surfaces of mouse hearts, indicating effective transduction and expression at the target site. These results demonstrate the great potential of electrospun PDO nonwoven fabrics carrying therapeutic AAV vectors for gene therapy.


Assuntos
Dependovirus , Edição de Genes , Vetores Genéticos , Polidioxanona , Dependovirus/genética , Animais , Vetores Genéticos/genética , Polidioxanona/química , Edição de Genes/métodos , Camundongos , Humanos , Transdução Genética/métodos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Terapia Genética/métodos , Miocárdio/metabolismo
2.
J Biomed Mater Res B Appl Biomater ; 112(1): e35345, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37902433

RESUMO

Adeno-associated viral (AAV) vectors play a significant role in gene therapy, yet the typical delivery methods, like systemic and local AAV injections, often lead to unintended off-target distribution and tissue damage due to injection. In this study, we propose a localized delivery approach for AAV vectors utilizing electrospun gelatin nanofiber mats, which are cross-linked with glutaraldehyde. The AAV vectors, which encoded a green fluorescent protein (GFP), were loaded onto the mats by immersing them in a solution containing the vectors. The amount of AAV vector loaded onto the mats increased as the vector concentration in the solution increased. The loaded AAV vector was steadily released into the cell culture medium over 3 days. The mats incubated for 3 days also showed the ability to transduce into the cells cultured on them. We evaluated the effectiveness of this delivery system by attaching the mats to mouse livers. GFP expression was visible on the surface of the liver beneath the attached mats, but not in areas in direct contact with the mats. These findings suggest that the attachment of AAV vector-loaded electrospun gelatin nanofiber mats to a target site present a promising solution for localized gene delivery while reducing off-target distribution.


Assuntos
Gelatina , Nanofibras , Camundongos , Animais , Técnicas de Transferência de Genes
3.
Biomolecules ; 12(11)2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36358988

RESUMO

The delivery of nucleic acids is indispensable for tissue engineering and gene therapy. However, the current approaches involving DNA/RNA delivery by systemic and local injections face issues such as clearance, off-target distribution, and tissue damage. In this study, we report plasmid DNA (pDNA) delivery using gelatin electrospun nanofibers obtained through horseradish peroxidase (HRP)-mediated insolubilization. The nanofibers were obtained through the electrospinning of an aqueous solution containing gelatin possessing phenolic hydroxyl (Ph) moieties (Gelatin-Ph) and HRP with subsequent HRP-mediated cross-linking of the Ph moieties by exposure to air containing 16 ppm H2O2 for 30 min. Then, Lipofectamine/pDNA complexes were immobilized on the nanofibers through immersion in the solution containing the pDNA complexes, resulting in transfection and sustained delivery of pDNA. Cells cultured on the resultant nanofibers expressed genome-editing molecules including Cas9 protein and guide RNA (gRNA), resulting in targeted gene knock-in and knock-out. These results demonstrated the potential of Gelatin-Ph nanofibers obtained through electrospinning and subsequent HRP-mediated cross-linking for gene therapy and tissue regeneration by genome editing.


Assuntos
Gelatina , Nanofibras , Gelatina/química , Nanofibras/química , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/genética , Peroxidase do Rábano Silvestre/metabolismo , Peróxido de Hidrogênio , Plasmídeos/genética , DNA
4.
Colloids Surf B Biointerfaces ; 216: 112561, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35576881

RESUMO

Gelatin electrospun nanofiber mats are gaining interest for applications in biomaterials science, such as tissue engineering and drug/gene delivery systems. In this study, we report the use of electrospun gelatin nanofiber mats for plasmid DNA (pDNA) delivery. Gelatin nanofiber mats were insolubilized via cross-linking with glutaraldehyde. On the cross-linked mats, human embryonic kidney-derived HEK293 cells demonstrated high viability for 7 days of culture (>95%) and were able to proliferate during that time. The Lipofectamine/pDNA complexes were immobilized on the mats through immersion in a solution, and HEK293 cells cultured on these mats expressed GFP for 7 days. Furthermore, HEK293 cells did not express GFP via the pDNA complexes released from the mats because the ability to deliver pDNA into the cells was lost. Since the mats could be used to transfect multiple types of pDNA into the cells simultaneously, we have achieved targeted genome editing using the mats. These data highlight the potential of gelatin nanofiber mats with Lipofectamine/pDNA complexes for local gene therapy via pDNA delivery as well as genome editing.


Assuntos
Gelatina , Nanofibras , DNA/genética , Edição de Genes , Células HEK293 , Humanos , Lipídeos , Plasmídeos/genética
5.
ACS Omega ; 5(33): 21254-21259, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32875262

RESUMO

Gelatin-based water-insoluble nanofibers with a diameter of 160 nm were obtained from electrospinning aqueous solutions containing gelatin with phenolic hydroxyl (Ph) moieties (Gelatin-Ph) and horseradish peroxidase (HRP). The water insolubility of the nanofibers was accomplished through HRP-catalyzed cross-linking of the Ph moieties by exposing the electrospun nanofibers to air containing hydrogen peroxide. The HRP activity in the electrospun nanofibers was 65% that of native HRP. The cytocompatibility necessary for tissue engineering applications of the water-insoluble Gelatin-Ph nanofibers was confirmed by the adhesion and viability of human embryonic kidney-derived HEK293 cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...