Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Emerg Infect Dis ; 30(8): 1-13, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39043566

RESUMO

Influenza A/H9 viruses circulate worldwide in wild and domestic avian species, continuing to evolve and posing a zoonotic risk. A substantial increase in human infections with A/H9N2 subtype avian influenza viruses (AIVs) and the emergence of novel reassortants carrying A/H9N2-origin internal genes has occurred in recent years. Different names have been used to describe the circulating and emerging A/H9 lineages. To address this issue, an international group of experts from animal and public health laboratories, endorsed by the WOAH/FAO Network of Expertise on Animal Influenza, has created a practical lineage classification and nomenclature system based on the analysis of 10,638 hemagglutinin sequences from A/H9 AIVs sampled worldwide. This system incorporates phylogenetic relationships and epidemiologic characteristics designed to trace emerging and circulating lineages and clades. To aid in lineage and clade assignment, an online tool has been created. This proposed classification enables rapid comprehension of the global spread and evolution of A/H9 AIVs.


Assuntos
Influenza Aviária , Influenza Humana , Filogenia , Terminologia como Assunto , Animais , Humanos , Influenza Humana/epidemiologia , Influenza Humana/virologia , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Aves/virologia , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/classificação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética
2.
EFSA J ; 22(7): e8930, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39036773

RESUMO

Between 16 March and 14 June 2024, 42 highly pathogenic avian influenza (HPAI) A(H5) virus detections were reported in domestic (15) and wild (27) birds across 13 countries in Europe. Although the overall number of detections in Europe has not been this low since the 2019-2020 epidemiological year, HPAI viruses continue to circulate at a very low level. Most detections in poultry were due to indirect contact with wild birds, but there was also secondary spread. Outside Europe, the HPAI situation intensified particularly in the USA, where a new A(H5N1) virus genotype (B3.13) has been identified in >130 dairy herds in 12 states. Infection in cattle appears to be centred on the udder, with milk from infected animals showing high viral loads and representing a new vehicle of transmission. Apart from cattle, HPAI viruses were identified in two other mammal species (alpaca and walrus) for the first time. Between 13 March and 20 June 2024, 14 new human cases with avian influenza virus infection were reported from Vietnam (one A(H5N1), one A(H9N2)), Australia (with travel history to India, one A(H5N1)), USA (three A(H5N1)), China (two A(H5N6), three A(H9N2), one A(H10N3)), India (one A(H9N2)), and Mexico (one fatal A(H5N2) case). The latter case was the first laboratory-confirmed human infection with avian influenza virus subtype A(H5N2). Most of the human cases had reported exposure to poultry, live poultry markets, or dairy cattle prior to avian influenza virus detection or onset of illness. Human infections with avian influenza viruses remain rare and no human-to-human transmission has been observed. The risk of infection with currently circulating avian A(H5) influenza viruses of clade 2.3.4.4b in Europe remains low for the general public in the EU/EEA. The risk of infection remains low-to-moderate for those occupationally or otherwise exposed to infected animals or contaminated environments.

3.
Euro Surveill ; 29(25)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38904109

RESUMO

Highly pathogenic avian influenza (HPAI) has caused widespread mortality in both wild and domestic birds in Europe 2020-2023. In July 2023, HPAI A(H5N1) was detected on 27 fur farms in Finland. In total, infections in silver and blue foxes, American minks and raccoon dogs were confirmed by RT-PCR. The pathological findings in the animals include widespread inflammatory lesions in the lungs, brain and liver, indicating efficient systemic dissemination of the virus. Phylogenetic analysis of Finnish A(H5N1) strains from fur animals and wild birds has identified three clusters (Finland I-III), and molecular analyses revealed emergence of mutations known to facilitate viral adaptation to mammals in the PB2 and NA proteins. Findings of avian influenza in fur animals were spatially and temporally connected with mass mortalities in wild birds. The mechanisms of virus transmission within and between farms have not been conclusively identified, but several different routes relating to limited biosecurity on the farms are implicated. The outbreak was managed in close collaboration between animal and human health authorities to mitigate and monitor the impact for both animal and human health.


Assuntos
Animais Selvagens , Charadriiformes , Surtos de Doenças , Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Filogenia , Animais , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Finlândia/epidemiologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Animais Selvagens/virologia , Charadriiformes/virologia , Surtos de Doenças/veterinária , Fazendas , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/mortalidade , Infecções por Orthomyxoviridae/epidemiologia , Raposas/virologia , Aves/virologia , Vison/virologia
4.
Virus Evol ; 10(1): veae027, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699215

RESUMO

Since 2016, A(H5Nx) high pathogenic avian influenza (HPAI) virus of clade 2.3.4.4b has become one of the most serious global threats not only to wild and domestic birds, but also to public health. In recent years, important changes in the ecology, epidemiology, and evolution of this virus have been reported, with an unprecedented global diffusion and variety of affected birds and mammalian species. After the two consecutive and devastating epidemic waves in Europe in 2020-2021 and 2021-2022, with the second one recognized as one of the largest epidemics recorded so far, this clade has begun to circulate endemically in European wild bird populations. This study used the complete genomes of 1,956 European HPAI A(H5Nx) viruses to investigate the virus evolution during this varying epidemiological outline. We investigated the spatiotemporal patterns of A(H5Nx) virus diffusion to/from and within Europe during the 2020-2021 and 2021-2022 epidemic waves, providing evidence of ongoing changes in transmission dynamics and disease epidemiology. We demonstrated the high genetic diversity of the circulating viruses, which have undergone frequent reassortment events, providing for the first time a complete overview and a proposed nomenclature of the multiple genotypes circulating in Europe in 2020-2022. We described the emergence of a new genotype with gull adapted genes, which offered the virus the opportunity to occupy new ecological niches, driving the disease endemicity in the European wild bird population. The high propensity of the virus for reassortment, its jumps to a progressively wider number of host species, including mammals, and the rapid acquisition of adaptive mutations make the trend of virus evolution and spread difficult to predict in this unfailing evolving scenario.

5.
EFSA J ; 22(3): e8754, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38550271

RESUMO

Between 2 December 2023 and 15 March 2024, highly pathogenic avian influenza (HPAI) A(H5) outbreaks were reported in domestic (227) and wild (414) birds across 26 countries in Europe. Compared to previous years, although still widespread, the overall number of HPAI virus detections in birds was significantly lower, among other reasons, possibly due to some level of flock immunity in previously affected wild bird species, resulting in reduced contamination of the environment, and a different composition of circulating A(H5N1) genotypes. Most HPAI outbreaks reported in poultry were primary outbreaks following the introduction of the virus by wild birds. Outside Europe, the majority of outbreaks in poultry were still clustered in North America, while the spread of A(H5) to more naïve wild bird populations on mainland Antarctica is of particular concern. For mammals, A(H5N5) was reported for the first time in Europe, while goat kids in the United States of America represented the first natural A(H5N1) infection in ruminants. Since the last report and as of 12 March 2024, five human avian influenza A(H5N1) infections, including one death, three of which were clade 2.3.2.1c viruses, have been reported by Cambodia. China has reported two human infections, including one fatal case, with avian influenza A(H5N6), four human infections with avian influenza A(H9N2) and one fatal case with co-infection of seasonal influenza A(H3N2) and avian influenza A(H10N5). The latter case was the first documented human infection with avian influenza A(H10N5). Human infections with avian influenza remain rare and no sustained human-to-human infection has been observed. The risk of infection with currently circulating avian H5 influenza viruses of clade 2.3.4.4b in Europe remains low for the general population in the EU/EEA. The risk of infection remains low to moderate for those occupationally or otherwise exposed to infected animals.

6.
Influenza Other Respir Viruses ; 18(2): e13254, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38314064

RESUMO

Background: The introduction of multiple avian influenza virus (AIV) subtypes into Nigeria has resulted in several poultry outbreaks purportedly linked to trade and wild birds. The role of wild birds in perpetuating AIV in Nigeria was, therefore, elucidated. Methods: A cross-sectional study was conducted among wild aquatic bird species at the Hadejia-Nguru wetlands in Northeastern Nigeria between March and April 2022. A total of 452 swabs (226 cloacae and 226 oropharyngeal) were collected using a mist net to capture the birds. These samples were tested by RT-qPCR, followed by sequencing. Results: Highly pathogenic AIV of the H5N1 subtype was identified in clinically healthy wild bird species, namely, African jacana, ruff, spur-winged goose, squared-tailed nightjar, white-faced whistling ducks, and white stork. A prevalence of 11.1% (25/226) was recorded. Phylogenetic analysis of the complete HA gene segment indicated the presence of clade 2.3.4.4b. However, these H5N1 viruses characterized from these wild birds cluster separately from the H5N1 viruses characterized in Nigerian poultry since early 2021. Specifically, the viruses form two distinct genetic groups both linked with the Eurasian H5N1 gene pool but likely resulting from two distinct introductions of the virus in the region. Whole-genome characterization of the viruses reveals the presence of mammalian adaptive marker E627K in two Afro-tropical resident aquatic ducks. This has zoonotic potential. Conclusion: Our findings highlight the key role of surveillance in wild birds to monitor the diversity of viruses in this area, provide the foundations of epidemiological understanding, and facilitate risk assessment.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Humanos , Animais , Virus da Influenza A Subtipo H5N1/genética , Influenza Aviária/epidemiologia , Filogenia , Nigéria/epidemiologia , Estudos Transversais , Áreas Alagadas , Aves , Vírus da Influenza A/genética , Animais Selvagens , Aves Domésticas , Patos , Mamíferos
7.
EFSA J ; 21(12): e8539, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38116102

RESUMO

Between 2 September and 1 December 2023, highly pathogenic avian influenza (HPAI) A(H5) outbreaks were reported in domestic (88) and wild (175) birds across 23 countries in Europe. Compared to previous years, the increase in the number of HPAI virus detections in waterfowl has been delayed, possibly due to a later start of the autumn migration of several wild bird species. Common cranes were the most frequently affected species during this reporting period with mortality events being described in several European countries. Most HPAI outbreaks reported in poultry were primary outbreaks following the introduction of the virus by wild birds, with the exception of Hungary, where two clusters involving secondary spread occurred. HPAI viruses identified in Europe belonged to eleven different genotypes, seven of which were new. With regard to mammals, the serological survey conducted in all fur farms in Finland revealed 29 additional serologically positive farms during this reporting period. Wild mammals continued to be affected mostly in the Americas, from where further spread into wild birds and mammals in the Antarctic region was described for the first time. Since the last report and as of 1 December 2023, three fatal and one severe human A(H5N1) infection with clade 2.3.2.1c viruses have been reported by Cambodia, and one A(H9N2) infection was reported from China. No human infections related to the avian influenza detections in animals in fur farms in Finland have been reported, and human infections with avian influenza remain a rare event. The risk of infection with currently circulating avian H5 influenza viruses of clade 2.3.4.4b in Europe remains low for the general population in the EU/EEA. The risk of infection remains low to moderate for occupationally or otherwise exposed people to infected birds or mammals (wild or domesticated); this assessment covers different situations that depend on the level of exposure.

8.
Microorganisms ; 11(11)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-38004656

RESUMO

The SARS-CoV-2 Delta variant of concern (VOC) was often associated with serious clinical course of the COVID-19 disease. Herein, we investigated the selective pressure, gene flow and evaluation on the frequencies of mutations causing amino acid substitutions in the Delta variant in three Italian regions. A total of 1500 SARS-CoV-2 Delta genomes, collected in Italy from April to October 2021 were investigated, including a subset of 596 from three Italian regions. The selective pressure and the frequency of amino acid substitutions and the prediction of their possible impact on the stability of the proteins were investigated. Delta variant dataset, in this study, identified 68 sites under positive selection: 16 in the spike (23.5%), 11 in nsp2 (16.2%) and 10 in nsp12 (14.7%) genes. Three of the positive sites in the spike were located in the receptor-binding domain (RBD). In Delta genomes from the three regions, 6 changes were identified as very common (>83.7%), 4 as common (>64.0%), 21 at low frequency (2.1%-25.0%) and 29 rare (≤2.0%). The detection of positive selection on key mutations may represent a model to identify recurrent signature mutations of the virus.

9.
EFSA J ; 21(10): e08328, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37809353

RESUMO

Between 24 June and 1 September 2023, highly pathogenic avian influenza (HPAI) A(H5) outbreaks were reported in domestic (25) and wild (482) birds across 21 countries in Europe. Most of these outbreaks appeared to be clustered along coastlines with only few HPAI virus detections inland. In poultry, all HPAI outbreaks were primary and sporadic with most of them occurring in the United Kingdom. In wild birds, colony-breeding seabirds continued to be most heavily affected, but an increasing number of HPAI virus detections in waterfowl is expected in the coming weeks. The current epidemic in wild birds has already surpassed the one of the previous epidemiological year in terms of total number of HPAI virus detections. As regards mammals, A(H5N1) virus was identified in 26 fur animal farms in Finland. Affected species included American mink, red and Arctic fox, and common raccoon dog. The most likely source of introduction was contact with gulls. Wild mammals continued to be affected worldwide, mostly red foxes and different seal species. Since the last report and as of 28 September 2023, two A(H5N1) clade 2.3.4.4b virus detections in humans have been reported by the United Kingdom, and three human infections with A(H5N6) and two with A(H9N2) were reported from China, respectively. No human infection related to the avian influenza detections in animals on fur farms in Finland or in cats in Poland have been reported, and human infections with avian influenza remain a rare event. The risk of infection with currently circulating avian H5 influenza viruses of clade 2.3.4.4b in Europe remains low for the general population in the EU/EEA. The risk of infection remains low to moderate for occupationally or otherwise exposed people to infected birds or mammals (wild or domesticated); this assessment covers different situations that depend on the level of exposure.

10.
Microorganisms ; 11(9)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37764070

RESUMO

In this study, we report the first outbreak of highly pathogenic avian influenza (HPAI) A H5N8, clade 2.3.4.4b in Kosovo on 19 May 2021. The outbreak consisted of three phases: May-June 2021, September-November 2021, and January-May 2022. In total, 32 backyards and 10 commercial holdings tested positive for the virus. Interestingly, the third and last phase of the outbreak coincided with the massive H5N1 clade 2.3.4.4b epidemic in Europe. Phylogenetic analyses of 28 viral strains from Kosovo revealed that they were closely related to the H5N8 clade 2.3.4.4.b viruses that had been circulating in Albania, Bulgaria, Croatia, Hungary, and Russia in early 2021. Whole genome sequencing of the 25 and partial sequencing of three H5N8 viruses from Kosovo showed high nucleotide identity, forming a distinctive cluster and suggesting a single introduction. The results of the network analysis were in accordance with the three epidemic waves and suggested that the viral diffusion could have been caused by secondary spreads among farms and/or different introductions of the same virus from wild birds. The persistent circulation of the same virus over a one-year period highlights the potential risk of the virus becoming endemic, especially in settings with non-adequate biosecurity.

11.
Euro Surveill ; 28(35)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37650905

RESUMO

In April 2023, an outbreak of clade 2.3.4.4b highly pathogenic avian influenza A(H5N1) viruses carrying the T271A mammalian adaptive mutation in the PB2 protein was detected in a backyard poultry farm in Italy. Five domestic dogs and one cat living on the premises had seroconverted in the absence of clinical signs. Virological and serological monitoring of individuals exposed to the virus proved the absence of human transmission, however, asymptomatic influenza A(H5N1) infections in mammalian pets may have important public health implications.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Animais , Cães , Humanos , Infecções Assintomáticas , Aves , Virus da Influenza A Subtipo H5N1/genética , Influenza Aviária/epidemiologia , Itália/epidemiologia , Mamíferos
12.
Euro Surveill ; 28(31)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37535474

RESUMO

BackgroundOver a 3-week period in late June/early July 2023, Poland experienced an outbreak caused by highly pathogenic avian influenza (HPAI) A(H5N1) virus in cats.AimThis study aimed to characterise the identified virus and investigate possible sources of infection.MethodsWe performed next generation sequencing and phylogenetic analysis of detected viruses in cats.ResultsWe sampled 46 cats, and 25 tested positive for avian influenza virus. The identified viruses belong to clade 2.3.4.4b, genotype CH (H5N1 A/Eurasian wigeon/Netherlands/3/2022-like). In Poland, this genotype was responsible for several poultry outbreaks between December 2022 and January 2023 and has been identified only sporadically since February 2023. Viruses from cats were very similar to each other, indicating one common source of infection. In addition, the most closely related virus was detected in a dead white stork in early June. Influenza A(H5N1) viruses from cats possessed two amino acid substitutions in the PB2 protein (526R and 627K) which are two molecular markers of virus adaptation in mammals. The virus detected in the white stork presented one of those mutations (627K), which suggests that the virus that had spilled over to cats was already partially adapted to mammalian species.ConclusionThe scale of HPAI H5N1 virus infection in cats in Poland is worrying. One of the possible sources seems to be poultry meat, but to date no such meat has been identified with certainty. Surveillance should be stepped up on poultry, but also on certain species of farmed mammals kept close to infected poultry farms.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Influenza Humana , Gatos , Animais , Humanos , Influenza Humana/epidemiologia , Influenza Aviária/epidemiologia , Virus da Influenza A Subtipo H5N1/genética , Filogenia , Polônia/epidemiologia , Aves , Surtos de Doenças/veterinária , Aves Domésticas , Vírus da Influenza A/genética , Mamíferos
13.
EFSA J ; 21(7): e08191, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37485254

RESUMO

Between 29 April and 23 June 2023, highly pathogenic avian influenza (HPAI) A(H5N1) virus (clade 2.3.4.4b) outbreaks were reported in domestic (98) and wild (634) birds across 25 countries in Europe. A cluster of outbreaks in mulard ducks for foie gras production was concentrated in Southwest France, whereas the overall A(H5N1) situation in poultry in Europe and worldwide has eased. In wild birds, black-headed gulls and several new seabird species, mostly gulls and terns (e.g. sandwich terns), were heavily affected, with increased mortality being observed in both adults and juveniles after hatching. Compared to the same period last year, dead seabirds have been increasingly found inland and not only along European coastlines. As regards mammals, A(H5N1) virus was identified in 24 domestic cats and one caracal in Poland between 10 and 30 June 2023. Affected animals showed neurological and respiratory signs, sometimes mortality, and were widely scattered across nine voivodeships in the country. All cases are genetically closely related and identified viruses cluster with viruses detected in poultry (since October 2022, but now only sporadic) and wild birds (December 2022-January 2023) in the past. Uncertainties still exist around their possible source of infection, with no feline-to-feline or feline-to-human transmission reported so far. Since 10 May 2023 and as of 4 July 2023, two A(H5N1) clade 2.3.4.4b virus detections in humans were reported from the United Kingdom, and two A(H9N2) and one A(H5N6) human infections in China. In addition, one person infected with A(H3N8) in China has died. The risk of infection with currently circulating avian H5 influenza viruses of clade 2.3.4.4b in Europe remains low for the general population in the EU/EEA, low to moderate for occupationally or otherwise exposed people to infected birds or mammals (wild or domesticated).

14.
Viruses ; 15(6)2023 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-37376688

RESUMO

In 2021, amidst the COVID-19 pandemic and global food insecurity, the Nigerian poultry sector was exposed to the highly pathogenic avian influenza (HPAI) virus and its economic challenges. Between 2021 and 2022, HPAI caused 467 outbreaks reported in 31 of the 37 administrative regions in Nigeria. In this study, we characterized the genomes of 97 influenza A viruses of the subtypes H5N1, H5N2, and H5N8, which were identified in different agro-ecological zones and farms during the 2021-2022 epidemic. The phylogenetic analysis of the HA genes showed a widespread distribution of the H5Nx clade 2.3.4.4b and similarity with the HPAI H5Nx viruses that have been detected in Europe since late 2020. The topology of the phylogenetic trees indicated the occurrence of several independent introductions of the virus into the country, followed by a regional evolution of the virus that was most probably linked to its persistent circulation in West African territories. Additional evidence of the evolutionary potential of the HPAI viruses circulating in this region is the identification in this study of a putative H5N1/H9N2 reassortant virus in a mixed-species commercial poultry farm. Our data confirm Nigeria as a crucial hotspot for HPAI virus introduction from the Eurasian territories and reveal a dynamic pattern of avian influenza virus evolution within the Nigerian poultry population.


Assuntos
COVID-19 , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H5N2 , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Influenza Humana , Doenças das Aves Domésticas , Animais , Humanos , Aves Domésticas , Influenza Aviária/epidemiologia , Virus da Influenza A Subtipo H5N1/genética , Vírus da Influenza A Subtipo H5N2/genética , Vírus da Influenza A Subtipo H9N2/genética , Filogenia , Nigéria/epidemiologia , Pandemias , COVID-19/epidemiologia , Aves , Influenza Humana/epidemiologia , Doenças das Aves Domésticas/epidemiologia
15.
EFSA J ; 21(6): e08039, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37293570

RESUMO

Between 2 March and 28 April 2023, highly pathogenic avian influenza (HPAI) A(H5Nx) virus, clade 2.3.4.4b, outbreaks were reported in domestic (106) and wild (610) birds across 24 countries in Europe. Poultry outbreaks occurred less frequently compared to the previous reporting period and compared to spring 2022. Most of these outbreaks were classified as primary outbreaks without secondary spread and some of them associated with atypical disease presentation, in particular low mortality. In wild birds, black-headed gulls continued to be heavily affected, while also other threatened wild bird species, such as the peregrine falcon, showed increased mortality. The ongoing epidemic in black-headed gulls, many of which breed inland, may increase the risk for poultry, especially in July-August, when first-year birds disperse from the breeding colonies. HPAI A(H5N1) virus also continued to expand in the Americas, including in mammalian species, and is expected to reach the Antarctic in the near future. HPAI virus infections were detected in six mammal species, particularly in marine mammals and mustelids, for the first time, while the viruses currently circulating in Europe retain a preferential binding for avian-like receptors. Since 13 March 2022 and as of 10 May 2023, two A(H5N1) clade 2.3.4.4b virus detections in humans were reported from China (1), and Chile (1), as well as three A(H9N2) and one A(H3N8) human infections in China. The risk of infection with currently circulating avian H5 influenza viruses of clade 2.3.4.4b in Europe remains low for the general population in the EU/EEA, and low to moderate for occupationally or otherwise exposed people.

16.
Vaccines (Basel) ; 11(4)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37112779

RESUMO

Infectious bursal disease (IBD) is a viral poultry disease known worldwide for impacting the economy and food security. The disease is endemic in Nigeria, with reported outbreaks in vaccinated poultry flocks. To gain insight into the dynamics of infectious bursal disease virus (IBDV) evolution in Nigeria, near-complete genomes of four IBDVs were evaluated. Amino acid sequences in the hypervariable region of the VP2 revealed conserved markers (222A, 242I, 256I, 294I and 299S) associated with very virulent (vv) IBDV, including the serine-rich heptapeptide motif (SWSASGS). Based on the newly proposed classification for segments A and B, the IBDVs clustered in the A3B5 group (where A3 are IBDVs with vvIBDV-like segment A, and where B5 are from non-vvIBDV-like segment B) form a monophyletic subcluster. Unique amino acid mutations with yet-to-be-determined biological functions have been observed in both segments. Amino acid sequences of the Nigerian IBDVs showed that they are reassortant viruses. Circulation of reassortant IBDVs may be responsible for the vaccination failures observed in the Nigerian poultry population. Close monitoring of changes in the IBDV genome is recommended to nip deleterious changes in the bud through the identification and introduction of the most appropriate vaccine candidates and advocacy/extension programs for properly implementing disease control.

17.
EFSA J ; 21(3): e07917, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36949860

RESUMO

Between 3 December 2022 and 1 March 2023 highly pathogenic avian influenza (HPAI) A(H5N1) virus, clade 2.3.4.4b, was reported in Europe in domestic (522) and wild (1,138) birds over 24 countries. An unexpected number of HPAI virus detections in sea birds were observed, mainly in gull species and particularly in black-headed gulls (large mortality events were observed in France, Belgium, the Netherlands, and Italy). The close genetic relationship among viruses collected from black-headed gulls suggests a southward spread of the virus. Moreover, the genetic analyses indicate that the virus persisted in Europe in residential wild birds during and after the summer months. Although the virus retained a preferential binding for avian-like receptors, several mutations associated to increased zoonotic potential were detected. The risk of HPAI virus infection for poultry due to the virus circulating in black-headed gulls and other gull species might increase during the coming months, as breeding bird colonies move inland with possible overlap with poultry production areas. Worldwide, HPAI A(H5N1) virus continued to spread southward in the Americas, from Mexico to southern Chile. The Peruvian pelican was the most frequently reported infected species with thousands of deaths being reported. The reporting of HPAI A(H5N1) in mammals also continued probably linked to feeding on infected wild birds. In Peru, a mass mortality event of sea lions was observed in January and February 2023. Since October 2022, six A(H5N1) detections in humans were reported from Cambodia (a family cluster with 2 people, clade 2.3.2.1c), China (2, clade 2.3.4.4b), Ecuador (1, clade 2.3.4.4b), and Vietnam (1, unspecified clade), as well as two A(H5N6) human infections from China. The risk of infection with currently circulating avian H5 influenza viruses of clade 2.3.4.4b in Europe is assessed as low for the general population in the EU/EEA, and low to moderate for occupationally or otherwise exposed people.

18.
Infect Genet Evol ; 111: 105423, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36889484

RESUMO

Highly pathogenic avian influenza (HPAI) has caused widespread mortality in both wild and domestic birds in Europe during 2020-2022. Virus types H5N8 and H5N1 have dominated the epidemic. Isolated spill-over infections in mammals started to emerge as the epidemic continued. In autumn 2021, HPAI H5N1 caused a series of mass mortality events in farmed and released pheasants (Phasianus colchicus) in a restricted area in southern Finland. Later, in the same area, an otter (Lutra lutra), two red foxes (Vulpes vulpes) and a lynx (Lynx lynx) were found moribund or dead and infected with H5N1 HPAI virus. Phylogenetically, H5N1 strains from pheasants and mammals clustered together. Molecular analyses of the four mammalian virus strains revealed mutations in the PB2 gene segment (PB2-E627K and PB2-D701N) that are known to facilitate viral replication in mammals. This study revealed that avian influenza cases in mammals were spatially and temporally connected with avian mass mortalities suggesting increased infection pressure from birds to mammals.


Assuntos
Galliformes , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Lynx , Lontras , Animais , Influenza Aviária/epidemiologia , Virus da Influenza A Subtipo H5N1/genética , Finlândia/epidemiologia , Vírus da Influenza A/genética , Raposas
20.
Euro Surveill ; 28(3)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36695488

RESUMO

In October 2022, an outbreak in Europe of highly pathogenic avian influenza (HPAI) A(H5N1) in intensively farmed minks occurred in northwest Spain. A single mink farm hosting more than 50,000 minks was involved. The identified viruses belong to clade 2.3.4.4b, which is responsible of the ongoing epizootic in Europe. An uncommon mutation (T271A) in the PB2 gene with potential public health implications was found. Our investigations indicate onward mink transmission of the virus may have occurred in the affected farm.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Influenza Humana , Humanos , Animais , Influenza Aviária/epidemiologia , Vison , Virus da Influenza A Subtipo H5N1/genética , Espanha/epidemiologia , Fazendas , Influenza Humana/epidemiologia , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...