Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36374166

RESUMO

Pathogens utilize a panoply of effectors to manipulate plant defense. However, despite their importance, relatively little is actually known about regulation of these virulence factors. Here, we show that the effector Fol-Secreted Virulence-related Protein1 (FolSvp1), secreted from fungal pathogen Fusarium oxysporum f. sp. lycopersici (Fol), directly binds and translocates the tomato pathogenesis-related protein1, SlPR1, from the apoplast outside the plasma membrane to the host nucleus via its nuclear localization signal. Relocation of SlPR1 abolishes generation of the defense signaling peptide, CAPE1, from its C-terminus, and as a consequence, facilitates pathogen invasion of plants. The action of FolSvp1 requires covalent modification by acetylation for full virulence in host tomato tissues. The modification is catalyzed by the Fol FolArd1 lysine acetyltransferase prior to secretion. Addition of an acetyl group to one residue, K167, prevents ubiquitination-dependent degradation of FolSvp1 in both Fol and plant cells with different mechanisms, allowing it to function normally in fungal invasion. Either inactivation of FolSvp1 or removal of the acetyl group on K167 leads to impaired pathogenicity of Fol. These findings indicate that acetylation can regulate the stability of effectors of fungal plant pathogens with impact on virulence.


Assuntos
Fusarium , Solanum lycopersicum , Virulência , Doenças das Plantas/microbiologia , Acetilação , Fusarium/metabolismo , Fatores de Virulência/metabolismo
2.
Front Microbiol ; 13: 925868, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847085

RESUMO

DNA adenine N6-methylation (6mA) plays a critical role in various biological functions, but its occurrence and functions in filamentous plant pathogens are largely unexplored. Botrytis cinerea is an important pathogenic fungus worldwide. A systematic analysis of 6mA in B. cinerea was performed in this study, revealing that 6mA is widely distributed in the genome of this fungus. The 2 kb regions flanking many genes, particularly the upstream promoter regions, were susceptible to methylation. The role of BcMettl4, a 6mA methyltransferase, in the virulence of B. cinerea was investigated. BcMETTL4 disruption and point mutations of its catalytic motif "DPPW" both resulted in significant 6mA reduction in the genomic DNA and in reduced virulence of B. cinerea. RNA-Seq analysis revealed a total of 13 downregulated genes in the disruption mutant ΔBcMettl4 in which methylation occurred at the promoter sites. These were involved in oxidoreduction, secretory pathways, autophagy and carbohydrate metabolism. Two of these genes, BcFDH and BcMFS2, were independently disrupted. Knockout of BcFDH led to reduced sclerotium formation, while disruption of BcMFS2 resulted in dramatically decreased conidium formation and pathogenicity. These observations indicated that 6mA provides potential epigenetic markers in B. cinerea and that BcMettl4 regulates virulence in this important plant pathogen.

3.
BMC Res Notes ; 15(1): 125, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365194

RESUMO

OBJECTIVE: 'Candidatus Liberibacter asiaticus' (CLas) is associated with the devastating citrus 'greening' disease. All attempts to achieve axenic growth and complete Koch's postulates with CLas have failed to date, at best yielding complex cocultures with very low CLas titers detectable only by PCR. Reductive genome evolution has rendered all pathogenic 'Ca. Liberibacter' spp. deficient in multiple key biosynthetic, metabolic and structural pathways that are highly unlikely to be rescued in vitro by media supplementation alone. By contrast, Liberibacter crescens (Lcr) is axenically cultured and its genome is both syntenic and highly similar to CLas. Our objective is to achieve replicative axenic growth of CLas via addition of missing culturability-related Lcr genes. RESULTS: Bioinformatic analyses identified 405 unique ORFs in Lcr but missing (or truncated) in all 24 sequenced CLas strains. Site-directed mutagenesis confirmed and extended published EZ-Tn5 mutagenesis data, allowing elimination of 310 of these 405 genes as nonessential, leaving 95 experimentally validated Lcr genes as essential for CLas growth in axenic culture. Experimental conditions for conjugation of large GFP-expressing plasmids from Escherichia coli to Lcr were successfully established for the first time, providing a practical method for transfer of large groups of 'essential' Lcr genes to CLas.


Assuntos
Citrus , Rhizobiaceae , Cultura Axênica , Liberibacter , Doenças das Plantas , Rhizobiaceae/genética
4.
Mol Cell Proteomics ; 21(5): 100231, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35398590

RESUMO

Fusarium oxysporum is one of the most abundant and diverse fungal species found in soils and includes nonpathogenic, endophytic, and pathogenic strains affecting a broad range of plant and animal hosts. Conidiation is the major mode of reproduction in many filamentous fungi, but the regulation of this process is largely unknown. Lysine acetylation (Kac) is an evolutionarily conserved and widespread posttranslational modification implicated in regulation of multiple metabolic processes. A total of 62 upregulated and 49 downregulated Kac proteins were identified in sporulating mycelia versus nonsporulating mycelia of F. oxysporum. Diverse cellular proteins, including glycolytic enzymes, ribosomal proteins, and endoplasmic reticulum-resident molecular chaperones, were differentially acetylated in the sporulation process. Altered Kac levels of three endoplasmic reticulum-resident molecular chaperones, PDIK70, HSP70K604, and HSP40K32 were identified that with important roles in F. oxysporum conidiation. Specifically, K70 acetylation (K70ac) was found to be crucial for maintaining stability and activity of protein disulphide isomerase and the K604ac of HSP70 and K32ac of HSP40 suppressed the detoxification ability of these heat shock proteins, resulting in higher levels of protein aggregation. During conidial formation, an increased level of PDIK70ac and decreased levels of HSP70K604ac and HSP40K32ac contributed to the proper processing of unfolded proteins and eliminated protein aggregation, which is beneficial for dramatic cell biological remodeling during conidiation in F. oxysporum.


Assuntos
Agregados Proteicos , Proteômica , Acetilação , Animais , Fusarium , Chaperonas Moleculares , Processamento de Proteína Pós-Traducional , Proteômica/métodos
5.
Mol Plant Microbe Interact ; 35(3): 257-273, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34931906

RESUMO

The lipopolysaccharides (LPS) of gram-negative bacteria trigger a nitrosative and oxidative burst in both animals and plants during pathogen invasion. Liberibacter crescens strain BT-1 is a surrogate for functional genomic studies of the uncultured pathogenic 'Candidatus Liberibacter' spp. that are associated with severe diseases such as citrus greening and potato zebra chip. Structural determination of L. crescens LPS revealed the presence of a very long chain fatty acid modification. L. crescens LPS pretreatment suppressed growth of Xanthomonas perforans on nonhost tobacco (Nicotiana benthamiana) and X. citri subsp. citri on host orange (Citrus sinensis), confirming bioactivity of L. crescens LPS in activation of systemic acquired resistance (SAR). L. crescens LPS elicited a rapid burst of nitric oxide (NO) in suspension cultured tobacco cells. Pharmacological inhibitor assays confirmed that arginine-utilizing NO synthase (NOS) activity was the primary source of NO generation elicited by L. crescens LPS. LPS treatment also resulted in biological markers of NO-mediated SAR activation, including an increase in the glutathione pool, callose deposition, and activation of the salicylic acid and azelaic acid (AzA) signaling networks. Transient expression of 'Ca. L. asiaticus' bacterioferritin comigratory protein (BCP) peroxiredoxin in tobacco compromised AzA signaling, a prerequisite for LPS-triggered SAR. Western blot analyses revealed that 'Ca. L. asiaticus' BCP peroxiredoxin prevented peroxynitrite-mediated tyrosine nitration in tobacco. 'Ca. L. asiaticus' BCP peroxiredoxin (i) attenuates NO-mediated SAR signaling and (ii) scavenges peroxynitrite radicals, which would facilitate repetitive cycles of 'Ca. L. asiaticus' acquisition and transmission by fecund psyllids throughout the limited flush period in citrus.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Citrus , Rhizobiaceae , Proteínas de Bactérias , Citrus/microbiologia , Grupo dos Citocromos b , Ferritinas , Liberibacter , Lipopolissacarídeos/metabolismo , Estresse Nitrosativo , Peroxirredoxinas/metabolismo , Doenças das Plantas/microbiologia , Rhizobiaceae/metabolismo
6.
PLoS One ; 16(10): e0258583, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34644346

RESUMO

Axenically cultured Liberibacter crescens (Lcr) is a closely related surrogate for uncultured plant pathogenic species of the genus Liberibacter, including 'Candidatus L. asiaticus' (CLas) and 'Ca. L. solanacearum' (CLso). All Liberibacters encode a completely conserved gene repertoire for both flagella and Tad (Tight Adherence) pili and all are missing genes critical for nucleotide biosynthesis. Both flagellar swimming and Tad pilus-mediated twitching motility in Lcr were demonstrated for the first time. A role for Tad pili in the uptake of extracellular dsDNA for food in Liberibacters was suspected because both twitching and DNA uptake are impossible without repetitive pilus extension and retraction, and no genes encoding other pilus assemblages or mechanisms for DNA uptake were predicted to be even partially present in any of the 35 fully sequenced Liberibacter genomes. Insertional mutations of the Lcr Tad pilus genes cpaA, cpaB, cpaE, cpaF and tadC all displayed such severely reduced growth and viability that none could be complemented. A mutation affecting cpaF (motor ATPase) was further characterized and the strain displayed concomitant loss of twitching, viability and reduced periplasmic uptake of extracellular dsDNA. Mutations of comEC, encoding the inner membrane competence channel, had no effect on either motility or growth but completely abolished natural transformation in Lcr. The comEC mutation was restored by complementation using comEC from Lcr but not from CLas strain psy62 or CLso strain RS100, indicating that unlike Lcr, these pathogens were not naturally competent for transformation. This report provides the first evidence that the Liberibacter Tad pili are dynamic and essential for both motility and DNA uptake, thus extending their role beyond surface adherence.


Assuntos
DNA Bacteriano/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Citrus/microbiologia , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/fisiologia , Liberibacter/genética , Liberibacter/crescimento & desenvolvimento , Liberibacter/fisiologia , Mutagênese Sítio-Dirigida , Doenças das Plantas/microbiologia , Alinhamento de Sequência
7.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34681907

RESUMO

Huanglongbing (HLB) disease, also known as citrus greening disease, was first reported in the US in 2005. Since then, the disease has decimated the citrus industry in Florida, resulting in billions of dollars in crop losses and the destruction of thousands of acres of citrus groves. The causative agent of citrus greening disease is the phloem limited pathogen Candidatus Liberibacter asiaticus. As it has not been cultured, very little is known about the structural biology of the organism. Liberibacter are part of the Rhizobiaceae family, which includes nitrogen-fixing symbionts of legumes as well as the Agrobacterium plant pathogens. To better understand the Liberibacter genus, a closely related culturable bacterium (Liberibacter crescens or Lcr) has attracted attention as a model organism for structural and functional genomics of Liberibacters. Given that the structure of lipopolysaccharides (LPS) from Gram-negative bacteria plays a crucial role in mediating host-pathogen interactions, we sought to characterize the LPS from Lcr. We found that the major lipid A component of the LPS consisted of a pentaacylated molecule with a ß-6-GlcN disaccharide backbone lacking phosphate. The polysaccharide portion of the LPS was unusual compared to previously described members of the Rhizobiaceae family in that it contained ribofuranosyl residues. The LPS structure presented here allows us to extrapolate known LPS structure/function relationships to members of the Liberibacter genus which cannot yet be cultured. It also offers insights into the biology of the organism and how they manage to effectively attack citrus trees.


Assuntos
Lipídeo A/análise , Lipopolissacarídeos/análise , Lipopolissacarídeos/química , Sequência de Carboidratos , Liberibacter/metabolismo , Lipídeo A/química , Peso Molecular
8.
Front Microbiol ; 11: 559440, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013791

RESUMO

Fusarium oxysporum f. sp. lycopersici (Fol) is the causal agent of Fusarium wilt disease in tomato. Proteins secreted by this pathogen during initial host colonization largely determine the outcome of pathogen-host interactions. Lysine acetylation (Kac) plays a vital role in the functions of many proteins, but little is known about Kac in Fol secreted proteins. In this study, we analyzed lysine acetylation of the entire Fol secretome. Using high affinity enrichment of Kac peptides and LC-MS/MS analysis, 50 potentially secreted Fol proteins were identified and acetylation sites determined. Bioinformatics analysis revealed 32 proteins with canonical N-terminal signal peptide leaders, and most of them were predicted to be enzymes involved in a variety of biological processes and metabolic pathways. Remarkably, all 32 predicted secreted proteins were novel and encoded on the core chromosomes rather than on the previously identified LS pathogenicity chromosomes. Homolog scanning of the secreted proteins among 40 different species revealed 4 proteins that were species specific, 3 proteins that were class-specific in the Ascomycota phylum, and 25 proteins that were more widely conserved genes. These secreted proteins provide a starting resource for investigating putative novel pathogenic genes, with 26 up-regulated genes encoding Kac proteins that may play an important role during initial symptomless infection stages.

9.
Appl Environ Microbiol ; 85(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31420343

RESUMO

Liberibacter crescens is the only cultured member of its genus, which includes the devastating plant pathogen "Candidatus Liberibacter asiaticus," associated with citrus greening/Huanglongbing (HLB). L. crescens has a larger genome and greater metabolic flexibility than "Ca Liberibacter asiaticus" and the other uncultured plant-pathogenic Liberibacter species, and it is currently the best model organism available for these pathogens. L. crescens grows slowly and dies rapidly under current culture protocols and this extreme fastidiousness makes it challenging to study. We have determined that a major cause of rapid death of L. crescens in batch culture is its alkalinization of the medium (to pH 8.5 by the end of logarithmic phase). The majority of this alkalinization is due to consumption of alpha-ketoglutaric acid as its primary carbon source, with a smaller proportion of the pH rise due to NH3 production. Controlling the pH rise with higher buffering capacity and lower starting pH improved recoverability of cells from 10-day cultures by >1,000-fold. We have also performed a detailed analysis of L. crescens growth with total cell numbers calibrated to the optical density and the percentage of live and recoverable bacteria determined over 10-day time courses. We modified L. crescens culture conditions to greatly enhance survival and increase maximum culture density. The similarities between L. crescens and the pathogenic liberibacters make this work relevant to efforts to culture the latter organisms. Our results also suggest that growth-dependent pH alteration that overcomes medium buffering should always be considered when growing fastidious bacteria.IMPORTANCELiberibacter crescens is a bacterium that is closely related to plant pathogens that have caused billions of dollars in crop losses in recent years. Particularly devastating are citrus losses due to citrus greening disease, also known as Huanglongbing, which is caused by "Candidatus Liberibacter asiaticus" and carried by the Asian citrus psyllid. L. crescens is the only close relative of "Ca Liberibacter asiaticus" that can currently be grown in culture, and it therefore serves as an important model organism for the growth, genetic manipulation, and biological control of the pathogenic species. Here, we show that one of the greatest limitations to L. crescens growth is the sharp increase in alkaline conditions it produces as a consequence of consumption of its preferred nutrient source. In addition to new information about L. crescens growth and metabolism, we provide new guidelines for culture conditions that improve the survival and yield of L. crescens.


Assuntos
Citrus/microbiologia , Doenças das Plantas/microbiologia , Rhizobiaceae/crescimento & desenvolvimento , Amônia/metabolismo , Animais , Técnicas de Cultura Celular por Lotes , Meios de Cultura/química , Hemípteros/microbiologia , Concentração de Íons de Hidrogênio , Ácidos Cetoglutáricos/metabolismo , Liberibacter , Viabilidade Microbiana , Rhizobiaceae/classificação , Rhizobiaceae/genética
10.
Phytopathology ; 109(7): 1092-1101, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30998129

RESUMO

In recent decades, 'Candidatus Liberibacter spp.' have emerged as a versatile group of psyllid-vectored plant pathogens and endophytes capable of infecting a wide range of economically important plant hosts. The most notable example is 'Candidatus Liberibacter asiaticus' (CLas) associated with Huanglongbing (HLB) in several major citrus-producing areas of the world. CLas is a phloem-limited α-proteobacterium that is primarily vectored and transmitted among citrus species by the Asian citrus psyllid (ACP) Diaphorina citri. HLB was first detected in North America in Florida (USA) in 2005, following introduction of the ACP to the State in 1998. HLB rapidly spread to all citrus growing regions of Florida within three years, with severe economic consequences to growers and considerable expense to taxpayers of the state and nation. Inability to establish CLas in culture (except transiently) remains a significant scientific challenge toward effective HLB management. Lack of axenic cultures has restricted functional genomic analyses, transfer of CLas to either insect or plant hosts for fulfillment of Koch's postulates, characterization of host-pathogen interactions and effective screening of antibacterial compounds. In the last decade, substantial progress has been made toward CLas culturing: (i) three reports of transient CLas cultures were published, (ii) a new species of Liberibacter was identified and axenically cultured from diseased mountain papaya (Liberibacter crescens strain BT-1), (iii) psyllid hemolymph and citrus phloem sap were biochemically characterized, (iv) CLas phages were identified and lytic genes possibly affecting CLas growth were described, and (v) genomic sequences of 15 CLas strains were made available. In addition, development of L. crescens as a surrogate host for functional analyses of CLas genes, has provided valuable insights into CLas pathogenesis and its physiological dependence on the host cell. In this review we summarize the conclusions from these important studies.


Assuntos
Citrus , Hemípteros , Doenças das Plantas/microbiologia , Rhizobiaceae , Animais , Florida , América do Norte
11.
Sci Rep ; 9(1): 5150, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30914689

RESUMO

The Liberibacter genus comprises insect endosymbiont bacterial species that cause destructive plant diseases, including Huanglongbing in citrus and zebra chip in potato. To date, pathogenic 'Candidatus Liberibacter spp.' (CLs) remain uncultured, therefore the plant-associated Liberibacter crescens (Lcr), only cultured species of the genus, has been used as a biological model for in vitro studies. Biofilm formation by CLs has been observed on the outer midgut surface of insect vectors, but not in planta. However, the role of biofilm formation in the life cycle of these pathogens remains unclear. Here, a model system for studying CLs biofilms was developed using Lcr. By culture media modifications, bovine serum albumin (BSA) was identified as blocking initial cell-surface adhesion. Removal of BSA allowed for the first time observation of Lcr biofilms. After media optimization for biofilm formation, we demonstrated that Lcr attaches to surfaces, and form cell aggregates embedded in a polysaccharide matrix both in batch cultures and under flow conditions in microfluidic chambers. Biofilm structures may represent excellent adaptive advantages for CLs during insect vector colonization helping with host retention, immune system evasion, and transmission. Future studies using the Lcr model established here will help in the understanding of the biology of CLs.


Assuntos
Biofilmes/crescimento & desenvolvimento , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Modelos Biológicos , Rhizobiaceae , Liberibacter , Rhizobiaceae/patogenicidade , Rhizobiaceae/fisiologia , Soroalbumina Bovina/química
12.
J Plant Physiol ; 236: 61-65, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30884323

RESUMO

The Lasbcp (CLIBASIA_RS00445) 1-Cys peroxiredoxin gene is conserved among all 13 sequenced strains of Candidatus Liberibacter asiaticus, the causal agent of Huanglongbing or "citrus greening" disease. LasBCP was previously characterized as a secreted peroxiredoxin with substrate specificity for organic peroxides, and as a potential pathogenicity effector. Agrobacterium-mediated transient expression of LasBCP in citrus leaves provided significant protection against peroxidation of free and membrane-bound lipids, thereby preserving the molecular integrity of the chlorophyll apparatus and reducing accumulation of lipid peroxidation products (oxylipins) following exposure to tert-butyl hydroperoxide (tBOOH, an organic peroxide). Oxylipins extracted from GUS-expressing citrus leaves reduced viability of L. crescens, the only Liberibacter species cultured to date. However, similar extracts obtained from LasBCP-expressing leaves were less inhibitory to L. crescens growth and viability in culture. Quantitative RT-PCR analyses showed coordinated transcriptional downregulation of oxylipin biosynthetic (CitFAD, CitLOX, CitAOS and CitAOC), and jasmonic acid (JA) (CitJAR1, CitCOI1 and CitJIN1) and salicylic acid (SA) (CitPAL, CitICS and CitPR1) signaling pathway genes in citrus leaves expressing LasBCP and treated with tBOOH. The negative response regulator of jasmonic acid CitJAZ1 was upregulated in LasBCP-expressing citrus leaves under similar conditions. These data clearly demonstrated a protective role of secreted LasBCP in favor of Las survival and colonization by alleviating ROS-induced lipid peroxidation in citrus host, preventing accumulation of antimicrobial oxylipins, and suppressing both localized and systemic immune responses in planta.


Assuntos
Citrus/microbiologia , Oxilipinas/metabolismo , Peroxirredoxinas/metabolismo , Doenças das Plantas/microbiologia , Imunidade Vegetal , Rhizobiaceae/metabolismo , Clorofila/metabolismo , Citrus/imunologia , Citrus/metabolismo , Ciclopentanos/metabolismo , Interações Hospedeiro-Patógeno , Peroxidação de Lipídeos , Doenças das Plantas/imunologia , Folhas de Planta/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Rhizobiaceae/enzimologia , Ácido Salicílico/metabolismo , Transdução de Sinais
13.
Mol Plant Microbe Interact ; 31(12): 1312-1322, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29953333

RESUMO

The oxidative (H2O2) burst is a seminal feature of the basal plant defense response to attempted pathogen invasions. In 'Candidatus Liberibacter asiaticus' UF506, expression of the SC2 prophage-encoded secreted peroxidase (F489_gp15) increases bacterial fitness and delays symptom progression in citrus. Two chromosomal 1-Cys peroxiredoxin genes, CLIBASIA_RS00940 (Lasprx5) and CLIBASIA_RS00445 (Lasbcp), are conserved among all sequenced 'Ca. L. asiaticus' strains, including those lacking prophages. Both LasBCP and LasdPrx5 have only a single conserved peroxidatic Cys (CP/SH) and lack the resolving Cys (CR/SH). Lasprx5 appeared to be a housekeeping gene with similar moderate transcript abundance in both 'Ca. L. asiaticus'-infected psyllids and citrus. By contrast, Lasbcp was expressed only in planta, similar to the expression of the SC2 peroxidase. Since 'Ca. L. asiaticus' is uncultured, Lasbcp and Lasprx5 were functionally validated in a cultured surrogate species, Liberibacter crescens, and both genes significantly increased oxidative stress tolerance and cell viability in culture. LasBCP was nonclassically secreted and, in L. crescens, conferred 214-fold more resistance to tert-butyl hydroperoxide (tBOOH) than wild type. Transient overexpression of Lasbcp in tobacco suppressed H2O2-mediated transcriptional activation of RbohB, the key gatekeeper of the systemic plant defense signaling cascade. Lasbcp expression did not interfere with the perception of 'Ca. L. asiaticus' flagellin (flg22Las) but interrupted the downstream activation of RbohB and stereotypical deposition of callose in tobacco. Critically, LasBCP also protected against tBOOH-induced peroxidative degradation of lipid membranes in planta, preventing subsequent accumulation of antimicrobial oxylipins that can also trigger the localized hypersensitive cell death response.


Assuntos
Citrus/imunologia , Hemípteros/microbiologia , Doenças das Plantas/imunologia , Imunidade Vegetal , Rhizobiaceae/patogenicidade , Animais , Citrus/microbiologia , Insetos Vetores , Doenças das Plantas/microbiologia , Rhizobiaceae/genética , Rhizobiaceae/imunologia
14.
Appl Environ Microbiol ; 83(23)2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28939611

RESUMO

Methylglyoxal (MG) is a cytotoxic, nonenzymatic by-product of glycolysis that readily glycates proteins and DNA, resulting in carbonyl stress. Glyoxalase I and II (GloA and GloB) sequentially convert MG into d-lactic acid using glutathione (GSH) as a cofactor. The glyoxalase system is essential for the mitigation of MG-induced carbonyl stress, preventing subsequent cell death, and recycling GSH for maintenance of cellular redox poise. All pathogenic liberibacters identified to date are uncultured, including "Candidatus Liberibacter asiaticus," a psyllid endosymbiont and causal agent of the severely damaging citrus disease "huanglongbing." In silico analysis revealed the absence of gloA in "Ca Liberibacter asiaticus" and all other pathogenic liberibacters. Both gloA and gloB are present in Liberibacter crescens, the only liberibacter that has been cultured. L. crescens GloA was functional in a heterologous host. Marker interruption of gloA in L. crescens appeared to be lethal. Key glycolytic enzymes were either missing or significantly downregulated in "Ca Liberibacter asiaticus" compared to (cultured) L. crescens Marker interruption of sut, a sucrose transporter gene in L. crescens, decreased its ability to take up exogenously supplied sucrose in culture. "Ca Liberibacter asiaticus" lacks a homologous sugar transporter but has a functional ATP/ADP translocase, enabling it to thrive both in psyllids and in the sugar-rich citrus phloem by (i) avoiding sucrose uptake, (ii) avoiding MG generation via glycolysis, and (iii) directly importing ATP from the host cell. MG detoxification enzymes appear to be predictive of "Candidatus" status for many uncultured pathogenic and environmental bacteria.IMPORTANCE Discovered more than 100 years ago, the glyoxalase system is thought to be present across all domains of life and fundamental to cellular growth and viability. The glyoxalase system protects against carbonyl stress caused by methylglyoxal (MG), a highly reactive, mutagenic and cytotoxic compound that is nonenzymatically formed as a by-product of glycolysis. The uncultured alphaproteobacterium "Ca Liberibacter asiaticus" is a well-adapted endosymbiont of the Asian citrus psyllid, which transmits the severely damaging citrus disease "huanglongbing." "Ca Liberibacter asiaticus" lacks a functional glyoxalase pathway. We report here that the bacterium is able to thrive both in psyllids and in the sugar-rich citrus phloem by (i) avoiding sucrose uptake, (ii) avoiding (significant) MG generation via glycolysis, and (iii) directly importing ATP from the host cell. We hypothesize that failure to culture "Ca Liberibacter asiaticus" is at least partly due to its dependence on host cells for both ATP and MG detoxification.


Assuntos
Proteínas de Bactérias/genética , Metabolismo Energético , Glicólise , Rhizobiaceae/genética , Proteínas de Bactérias/metabolismo , Rhizobiaceae/enzimologia , Rhizobiaceae/metabolismo
15.
Genome Announc ; 5(28)2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28705973

RESUMO

The complete genome sequences of three Xanthomonas citri strains isolated from lime trees in Texas were found to belong to the Aw group. All carried nearly identical large plasmids with similarity to those of a citrus canker strain from India and to xanthomonads from Africa and Colombia. All three strains harbored unusual pthA homologs.

16.
mSphere ; 2(3)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28608866

RESUMO

Huanglongbing (HLB) is a severe disease of citrus caused by an uncultured alphaproteobacterium "Candidatus Liberibacter asiaticus" and transmitted by Asian citrus psyllids (Diaphorina citri). Two prophage genomes, SC1 and SC2, integrated in "Ca. Liberibacter asiaticus" strain UF506 were described previously, and very similar prophages are found resident in the majority of "Ca. Liberibacter asiaticus" strains described worldwide. The SC1 lytic cycle is marked by upregulation of prophage late genes, including a functional holin (SC1_gp110); these late genes are activated when "Ca. Liberibacter asiaticus" is in planta, but not when infecting the psyllid host. We previously reported that the holin promoter is strongly and constitutively active in Liberibacter crescens (a cultured proxy for uncultured "Ca. Liberibacter asiaticus") but is suppressed in a dose-dependent manner by crude aqueous extracts from D. citri applied exogenously. Here we report that the suppressor activity of the crude psyllid extract was heat labile and abolished by proteinase K treatment, indicating a proteinaceous repressor and of a size smaller than 30 kDa. The repressor was affinity captured from D. citri aqueous extracts using biotinylated holin promoter DNA immobilized on magnetic beads and subjected to liquid chromatography-tandem mass spectrometry (LC-MS/MS). Protein database interrogation was used to identify a small DNA-binding protein encoded by a gene carried by Wolbachia strain wDi, a resident endosymbiont of D. citri as the repressor. The in vitro-translated Wolbachia repressor protein was able to penetrate L. crescens cells, bind to "Ca. Liberibacter asiaticus" promoter DNA, and partially suppress holin promoter-driven ß-glucuronidase (GUS) activity, indicating potential involvement of an additional interacting partner(s) or posttranslational modification(s) for complete suppression. Expression of the Wolbachia repressor protein appeared to be constitutive irrespective of "Ca. Liberibacter asiaticus" infection status of the insect host. IMPORTANCE Host acquisition of a new microbial species can readily perturb the dynamics of preexisting microbial associations. Molecular cross talk between microbial associates may be necessary for efficient resource allocation and enhanced survival. Classic examples involve quorum sensing (QS), which detects population densities and is both used and coopted to control expression of bacterial genes, including host adaptation factors. We report that a 56-amino-acid repressor protein made by the resident psyllid endosymbiont Wolbachia can enter cells of Liberibacter crescens, a cultured proxy for the uncultured psyllid endosymbiont "Ca. Liberibacter asiaticus" and repress "Ca. Liberibacter asiaticus" phage lytic cycle genes. Such repression in "Ca. Liberibacter asiaticus" may be critical to survival of both endosymbionts, since phage-mediated lysis would likely breach the immunogenic threshold of the psyllid, invoking a systemic and nonspecific innate immune reaction.

17.
Mol Plant Pathol ; 17(2): 236-46, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25962850

RESUMO

Xanthomonas albilineans, the causal agent of sugarcane leaf scald, is a bacterial plant pathogen that is mainly spread by infected cuttings and contaminated harvesting tools. However, some strains of this pathogen are known to be spread by aerial means and are able to colonize the phyllosphere of sugarcane before entering the host plant and causing disease. The objective of this study was to identify the molecular factors involved in the survival or growth of X. albilineans on sugarcane leaves. We developed a bioassay to test for the attachment of X. albilineans on sugarcane leaves using tissue-cultured plantlets grown in vitro. Six mutants of strain XaFL07-1 affected in surface polysaccharide production completely lost their capacity to survive on the sugarcane leaf surface. These mutants produced more biofilm in vitro and accumulated more cellular poly-ß-hydroxybutyrate than the wild-type strain. A mutant affected in the production of small molecules (including potential biosurfactants) synthesized by non-ribosomal peptide synthetases (NRPSs) attached to the sugarcane leaves as well as the wild-type strain. Surprisingly, the attachment of bacteria on sugarcane leaves varied among mutants of the rpf gene cluster involved in bacterial quorum sensing. Therefore, quorum sensing may affect polysaccharide production, or both polysaccharides and quorum sensing may be involved in the survival or growth of X. albilineans on sugarcane leaves.


Assuntos
Aderência Bacteriana , Viabilidade Microbiana , Folhas de Planta/microbiologia , Polissacarídeos Bacterianos/metabolismo , Percepção de Quorum , Saccharum/microbiologia , Xanthomonas/fisiologia , Biofilmes , Bioensaio , Hidroxibutiratos , Família Multigênica , Mutação/genética , Compostos Orgânicos , Peptídeo Sintases/metabolismo , Plasmídeos/metabolismo , Poliésteres , Propriedades de Superfície , Xanthomonas/genética , Xanthomonas/crescimento & desenvolvimento , Xanthomonas/ultraestrutura
18.
Mol Plant Microbe Interact ; 28(12): 1330-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26313412

RESUMO

'Candidatus Liberibacter asiaticus' is transmitted by psyllids and causes huanglongbing (HLB), a lethal disease of citrus. Most pathogenic 'Ca. L. asiaticus' strains carry two nearly identical prophages similar to SC1 and SC2 in strain UF506. SC2 was observed to replicate as a moderately high-copy excision plasmid encoding a reactive oxygen species-scavenging peroxidase (SC2_gp095), a predicted lysogenic conversion factor. SC2_gp095 was expressed at significantly higher levels in periwinkle than in citrus and was suppressed in psyllids. SC2_gp095 was cloned in a shuttle vector and transformed into Escherichia coli and Liberibacter crescens, a culturable proxy for 'Ca. L. asiaticus'. Transformed L. crescens cells showed 20 to 25% enhanced resistance to H2O2on agar plates, 47% greater enzymatic activity, and enhanced growth in liquid cultures. A nonclassical secretion potential was predicted for SC2_gp095 and secretion from L. crescens was confirmed by enzymatic and Western blot analyses. Transient expression of SC2_gp095 in planta resulted in strong transcriptional downregulation of RbohB, the key gatekeeper of the H2O2-mediated defense signaling in plants, helping explain the surprisingly long incubation period (years) before HLB symptoms appear in 'Ca. L. asiaticus'-infected citrus. 'Ca. L. asiaticus' peroxidase is likely a secreted, horizontally acquired effector that suppresses host symptom development, a tactic used by most biotrophic plant pathogens.


Assuntos
Citrus/microbiologia , Peroxidases/genética , Prófagos/genética , Rhizobiaceae/fisiologia , Citrus/imunologia
19.
PLoS One ; 10(7): e0133796, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26218423

RESUMO

Xylella fastidiosa (X. fastidiosa) infects a wide range of plant hosts and causes economically serious diseases, including Pierce's Disease (PD) of grapevines. X. fastidiosa biocontrol strain EB92-1 was isolated from elderberry and is infectious and persistent in grapevines but causes only very slight symptoms under ideal conditions. The draft genome of EB92-1 revealed that it appeared to be missing genes encoding 10 potential PD pathogenicity effectors found in Temecula1. Subsequent PCR and sequencing analyses confirmed that EB92-1 was missing the following predicted effectors found in Temecula1: two type II secreted enzymes, including a lipase (LipA; PD1703) and a serine protease (PD0956); two identical genes encoding proteins similar to Zonula occludens toxins (Zot; PD0915 and PD0928), and at least one relatively short, hemagglutinin-like protein (PD0986). Leaves of tobacco and citrus inoculated with cell-free, crude protein extracts of E. coli BL21(DE3) overexpressing PD1703 exhibited a hypersensitive response (HR) in less than 24 hours. When cloned into shuttle vector pBBR1MCS-5, PD1703 conferred strong secreted lipase activity to Xanthomonas citri, E. coli and X. fastidiosa EB92-1 in plate assays. EB92-1/PD1703 transformants also showed significantly increased disease symptoms on grapevines, characteristic of PD. Genes predicted to encode PD0928 (Zot) and a PD0986 (hemagglutinin) were also cloned into pBBR1MCS-5 and moved into EB92-1; both transformants also showed significantly increased symptoms on V. vinifera vines, characteristic of PD. Together, these results reveal that PD effectors include at least a lipase, two Zot-like toxins and a possibly redundant hemagglutinin, none of which are necessary for parasitic survival of X. fastidiosa populations in grapevines or elderberry.


Assuntos
Proteínas de Bactérias , Genoma Bacteriano , Doenças das Plantas/microbiologia , Sambucus/microbiologia , Fatores de Virulência , Vitis/microbiologia , Xylella , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Xylella/genética , Xylella/metabolismo , Xylella/patogenicidade
20.
Appl Environ Microbiol ; 80(19): 6023-30, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25063651

RESUMO

"Candidatus Liberibacter asiaticus" is an uncultured alphaproteobacterium that systemically colonizes its insect host both inter- and intracellularly and also causes a severe, crop-destroying disease of citrus called huanglongbing, or citrus "greening." In planta, "Ca. Liberibacter asiaticus" is also systemic but phloem limited. "Ca. Liberibacter asiaticus" strain UF506 carries two predicted prophages, SC1 and SC2. Bacteriophage particles have been observed in experimentally "Ca. Liberibacter asiaticus"-infected periwinkle but not in any other host. Comparative gene expression analysis of predicted SC1 late genes showed a much higher level of late gene expression, including holin transcripts (SC1_gp110), in "Ca. Liberibacter asiaticus"-infected periwinkle relative to "Ca. Liberibacter asiaticus"-infected citrus. To functionally characterize predicted holin and endolysin activity, SC1_gp110 and two predicted endolysins, one within SC1 (SC1_gp035) and another well outside the predicted prophage region (CLIBASIA_04790), were cloned and expressed in Escherichia coli. Both SC1 genes inhibited bacterial growth consistent with holin and endolysin function. The holin (SC1_gp110) promoter region was fused with a uidA reporter on pUFR071, a wide bacterial host range (repW) replicon, and used to transform Liberibacter crescens strain BT-1 by electroporation. BT-1 is the only liberibacter strain cultured to date and was used as a proxy for "Ca. Liberibacter asiaticus." pUFR071 was >95% stable without selection in BT-1 for over 20 generations. The reporter construct exhibited strong constitutive glucuronidase (GUS) activity in culture-grown BT-1 cells. However, GUS reporter activity in BT-1 was suppressed in a dose-dependent manner by crude aqueous extracts from psyllids. Taken together with plant expression data, these observations indicate that "Ca. Liberibacter asiaticus" prophage activation may limit "Ca. Liberibacter asiaticus" host range and culturability.


Assuntos
Bacteriófagos/genética , Regulação Viral da Expressão Gênica , Doenças das Plantas/microbiologia , Prófagos/genética , Rhizobiaceae/genética , Proteínas Virais/genética , Alphaproteobacteria/genética , Alphaproteobacteria/virologia , Animais , Citrus/microbiologia , Genes Reporter , Hemípteros/microbiologia , Especificidade de Hospedeiro , Regiões Promotoras Genéticas/genética , Rhizobiaceae/virologia , Simbiose , Vinca/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...