Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Alzheimers Dement ; 20(7): 4717-4726, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38824433

RESUMO

INTRODUCTION: Familial Alzheimer's disease (fAD) is heterogeneous in terms of age at onset and clinical presentation. A greater understanding of the pathogenicity of fAD variants and how these contribute to heterogeneity will enhance our understanding of the mechanisms of AD more widely. METHODS: To determine the pathogenicity of the unclassified PSEN1 P436S mutation, we studied an expanded kindred of eight affected individuals, with magnetic resonance imaging (MRI) (two individuals), patient-derived induced pluripotent stem cell (iPSC) models (two donors), and post-mortem histology (one donor). RESULTS: An autosomal dominant pattern of inheritance of fAD was seen, with an average age at symptom onset of 46 years and atypical features. iPSC models and post-mortem tissue supported high production of amyloid beta 43 (Aß43). PSEN1 peptide maturation was unimpaired. DISCUSSION: We confirm that the P436S mutation in PSEN1 causes atypical fAD. The location of the mutation in the critical PSEN1 proline-alanine-leucine-proline (PALP) motif may explain the early age at onset despite appropriate protein maturation. HIGHLIGHTS: PSEN1 P436S mutations cause familial Alzheimer's disease. This mutation is associated with atypical clinical presentation. Induced pluripotent stem cells (iPSCs) and post-mortem studies support increased amyloid beta (Aß43) production. Early age at onset highlights the importance of the PALP motif in PSEN1 function.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Células-Tronco Pluripotentes Induzidas , Mutação , Presenilina-1 , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Idade de Início , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/patologia , Imageamento por Ressonância Magnética , Linhagem , Presenilina-1/genética
2.
Front Neurosci ; 16: 835645, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360155

RESUMO

Amyloid precursor protein (APP) and its cleavage fragment Amyloid-ß (Aß) have fundamental roles in Alzheimer's disease (AD). Genetic alterations that either increase the overall dosage of APP or alter its processing to favour the generation of longer, more aggregation prone Aß species, are directly causative of the disease. People living with one copy of APP are asymptomatic and reducing APP has been shown to lower the relative production of aggregation-prone Aß species in vitro. For these reasons, reducing APP expression is an attractive approach for AD treatment and prevention. In this review, we will describe the structure and the known functions of APP and go on to discuss the biological consequences of APP knockdown and knockout in model systems. We highlight progress in therapeutic strategies to reverse AD pathology via reducing APP expression. We conclude that new technologies that reduce the dosage of APP expression may allow disease modification and slow clinical progression, delaying or even preventing onset.

3.
Brain Commun ; 2(1)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32500121

RESUMO

Polymorphisms associated with BIN1 confer the second greatest risk for developing late onset Alzheimer's disease. The biological consequences of this genetic variation are not fully understood, however BIN1 is a binding partner for tau. Tau is normally a highly soluble cytoplasmic protein, but in Alzheimer's disease tau is abnormally phosphorylated and accumulates at synapses to exert synaptotoxicity. The purpose of this study was to determine if alterations to BIN1 and tau in Alzheimer's disease promote the damaging redistribution of tau to synapses, as a mechanism by which BIN1 polymorphisms may increase risk of developing Alzheimer's disease. We show that BIN1 is lost from the cytoplasmic fraction of Alzheimer's disease cortex, and this is accompanied by the progressive mislocalization of phosphorylated tau to synapses. We confirmed proline 216 in tau as critical for tau interaction with the BIN1-SH3 domain and show that phosphorylation of tau disrupts this binding, suggesting that tau phosphorylation in Alzheimer's disease disrupts tau-BIN1 associations. Moreover, we show that BIN1 knockdown in rat primary neurons to mimic BIN1 loss in Alzheimer's disease brain, causes the damaging accumulation of phosphorylated tau at synapses and alterations in dendritic spine morphology. We also observed reduced release of tau from neurons upon BIN1 silencing, suggesting that BIN1 loss disrupts the function of extracellular tau. Together, these data indicate that polymorphisms associated with BIN1 that reduce BIN1 protein levels in the brain likely act synergistically with increased tau phosphorylation to increase risk of Alzheimer's disease by disrupting cytoplasmic tau-BIN1 interactions, promoting the damaging mis-sorting of phosphorylated tau to synapses to alter synapse structure, and by reducing the release of physiological forms of tau to disrupt tau function.

4.
Front Cell Neurosci ; 11: 343, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163054

RESUMO

Spino-Cerebellar-Ataxia type 38 (SCA38) is caused by missense mutations in the very long chain fatty acid elongase 5 gene, ELOVL5. The main clinical findings in this disease are ataxia, hyposmia and cerebellar atrophy. Mice in which Elovl5 has been knocked out represent a model of the loss of function hypothesis of SCA38. In agreement with this hypothesis, Elovl5 knock out mice reproduced the main symptoms of patients, motor deficits at the beam balance test and hyposmia. The cerebellar cortex of Elovl5 knock out mice showed a reduction of thickness of the molecular layer, already detectable at 6 months of age, confirmed at 12 and 18 months. The total perimeter length of the Purkinje cell (PC) layer was also reduced in Elovl5 knock out mice. Since Elovl5 transcripts are expressed by PCs, whose dendrites are a major component of the molecular layer, we hypothesized that an alteration of their dendrites might be responsible for the reduced thickness of this layer. Reconstruction of the dendritic tree of biocytin-filled PCs, followed by Sholl analysis, showed that the distribution of distal dendrites was significantly reduced in Elovl5 knock out mice. Dendritic spine density was conserved. These results suggest that Elovl5 knock out mice recapitulate SCA38 symptoms and that their cerebellar atrophy is due, at least in part, to a reduced extension of PC dendritic arborization.

5.
J Mol Biol ; 427(5): 1061-74, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24792419

RESUMO

Assembly of the ß-barrel outer membrane proteins (OMPs) is an essential cellular process in Gram-negative bacteria and in the mitochondria and chloroplasts of eukaryotes--two organelles of bacterial origin. Central to this process is the conserved ß-barrel OMP that belongs to the Omp85 superfamily. In Escherichia coli, BamA is the core ß-barrel OMP and, together with four outer membrane lipoproteins, BamBCDE, constitutes the ß-barrel assembly machine (BAM). In this paper, we investigated the roles of BamD, an essential lipoprotein, and BamB in BamA biogenesis. Depletion of BamD caused impairment in BamA biogenesis and cessation of cell growth. These defects of BamD depletion were partly reversed by single-amino-acid substitutions mapping within the ß-barrel domain of BamA. However, in the absence of BamB, the positive effects of the ß-barrel substitutions on BamA biogenesis under BamD depletion conditions were nullified. By employing a BamA protein bearing one such substitution, F474L, it was demonstrated that the mutant BamA protein could not only assemble without BamD but also facilitate the assembly of wild-type BamA expressed in trans. Based on these data, we propose a model in which the Bam lipoproteins, which are localized to the outer membrane by the BAM-independent Lol pathway, aid in the creation of new BAM complexes by serving as outer membrane receptors and folding factors for nascent BamA molecules. The newly assembled BAM holocomplex then catalyzes the assembly of substrate OMPs and BamA. These in vivo findings are corroborated by recently published in vitro data.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Substituição de Aminoácidos/fisiologia , Escherichia coli/metabolismo , Lipoproteínas/metabolismo , Biogênese de Organelas , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...