RESUMO
The human gut microbiome contributes crucial bioactive metabolites that support human health and is sensitive to perturbations from the ingestion of alcohol and antibiotics. We interrogated the response and recovery of human gut microbes after acute alcohol or broad-spectrum antibiotic administration in a gut model simulating the luminal and mucosal colonic environment with an inoculated human microbiome. Both alcohol and antibiotic treatments reduced the production of major short-chain fatty acids (SCFAs) (acetate, propionate, and butyrate), which are established modulators of human health. Treatment with a microbial synbiotic restored and enhanced gut function. Butyrate and acetate production increased by up to 29.7% and 18.6%, respectively, relative to untreated, dysbiotic samples. In parallel, treatment led to increases in the relative abundances of beneficial commensal organisms not found in the synbiotic (e.g., Faecalibacterium prausnitzii and the urolithin-producing organism Gordonibacter pamelaeae) as well as species present in the synbiotic (e.g., Bifidobacterium infantis), suggesting synergistic interactions between supplemented and native microorganisms. These results lead us to conclude that functional shifts in the microbiome, evaluated by both metabolite production and specific taxonomic compositional changes, are an appropriate metric to assess microbiome "recovery" following a dysbiosis-inducing disruption. Overall, these findings support the execution of randomized clinical studies to determine whether a microbial synbiotic can help restore microbiome function after a disruption. IMPORTANCE The human gut microbiome is sensitive to disruptions by common stressors such as alcohol consumption and antibiotic treatment. In this study, we used an in vitro system modeling the gut microbiome to investigate whether treatment with a microbial synbiotic can help restore microbiome function after stress. We find that a complex gut community treated with alcohol or antibiotics showed reduced levels of production of short-chain fatty acids, which are critical beneficial molecules produced by a healthy gut microbiota. Treatment of stressed communities with a microbial synbiotic resulted in the recovery of SCFA production as well as an increase in the abundance of beneficial commensal organisms. Our results suggest that treatment with a microbial synbiotic has the potential to restore healthy gut microbiome function after stress and merits further investigation in clinical studies.
Assuntos
Microbioma Gastrointestinal , Simbióticos , Humanos , Microbioma Gastrointestinal/fisiologia , Antibacterianos/farmacologia , Etanol , Ácidos Graxos Voláteis/metabolismo , ButiratosRESUMO
It has been over seventeen years since the scientific definition of probiotics was crafted, along with guidelines ensuring the appropriate use of the term. This definition is now used globally, yet on a consistent basis scientists, media and industry misrepresent probiotics or make generalized statements that illustrate a misunderstanding of their utility and limitations. The rate of discovery of novel organisms with potentially therapeutic benefit for both human and environmental health is progressing at an unprecedented rate. However, the term "probiotic" is often misapplied to describe any microbe with plausible therapeutic utility in the human host. It is argued that strict compliance to the scientific definition of the term "probiotic" and avoidance of generalizations to the whole field of probiotics based upon studies of one product, will help advance the development and validation of microbial therapies, and applications to improve human health.