Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 14(10): e1007341, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30352106

RESUMO

Vibrio cholerae and a subset of other Gram-negative bacteria, including Acinetobacter baumannii, express proteins with a C-terminal tripartite domain called GlyGly-CTERM, which consists of a motif rich in glycines and serines, followed by a hydrophobic region and positively charged residues. Here we show that VesB, a V. cholerae serine protease, requires the GlyGly-CTERM domain, the intramembrane rhomboid-like protease rhombosortase, and the type II secretion system (T2SS) for localization at the cell surface. VesB is cleaved by rhombosortase to expose the second glycine residue of the GlyGly-CTERM motif, which is then conjugated to a glycerophosphoethanolamine-containing moiety prior to engagement with the T2SS and outer membrane translocation. In support of this, VesB accumulates intracellularly in the absence of the T2SS, and surface-associated VesB activity is no longer detected when the rhombosortase gene is inactivated. In turn, when VesB is expressed without an intact GlyGly-CTERM domain, VesB is released to the extracellular milieu by the T2SS and does not accumulate on the cell surface. Collectively, our findings suggest that the posttranslational modification of the GlyGly-CTERM domain is essential for cell surface localization of VesB and other proteins expressed with this tripartite extension.


Assuntos
Proteínas de Bactérias/metabolismo , Cólera/microbiologia , Glicilglicina/metabolismo , Serina Endopeptidases/metabolismo , Sistemas de Secreção Tipo II/metabolismo , Vibrio cholerae/enzimologia , Sequência de Aminoácidos , Cólera/metabolismo , Domínios e Motivos de Interação entre Proteínas , Homologia de Sequência
2.
J Biol Chem ; 289(12): 8288-98, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24459146

RESUMO

The chymotrypsin subfamily A of serine proteases consists primarily of eukaryotic proteases, including only a few proteases of bacterial origin. VesB, a newly identified serine protease that is secreted by the type II secretion system in Vibrio cholerae, belongs to this subfamily. VesB is likely produced as a zymogen because sequence alignment with trypsinogen identified a putative cleavage site for activation and a catalytic triad, His-Asp-Ser. Using synthetic peptides, VesB efficiently cleaved a trypsin substrate, but not chymotrypsin and elastase substrates. The reversible serine protease inhibitor, benzamidine, inhibited VesB and served as an immobilized ligand for VesB affinity purification, further indicating its relationship with trypsin-like enzymes. Consistent with this family of serine proteases, N-terminal sequencing implied that the propeptide is removed in the secreted form of VesB. Separate mutagenesis of the activation site and catalytic serine rendered VesB inactive, confirming the importance of these features for activity, but not for secretion. Similar to trypsin but, in contrast to thrombin and other coagulation factors, Na(+) did not stimulate the activity of VesB, despite containing the Tyr(250) signature. The crystal structure of catalytically inactive pro-VesB revealed that the protease domain is structurally similar to trypsinogen. The C-terminal domain of VesB was found to adopt an immunoglobulin (Ig)-fold that is structurally homologous to Ig-folds of other extracellular Vibrio proteins. Possible roles of the Ig-fold domain in stability, substrate specificity, cell surface association, and type II secretion of VesB, the first bacterial multidomain trypsin-like protease with known structure, are discussed.


Assuntos
Cólera/microbiologia , Serina Proteases/química , Serina Proteases/metabolismo , Vibrio cholerae/enzimologia , Sequência de Aminoácidos , Ativação Enzimática , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência , Sódio/metabolismo , Homologia Estrutural de Proteína , Trombina/química , Tripsina/química , Vibrio cholerae/química
3.
Mol Microbiol ; 81(1): 113-28, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21542860

RESUMO

ToxR of Vibrio cholerae directly activates the ompU promoter, but requires a second activator, TcpP to activate the toxT promoter. ompU encodes a porin, while toxT encodes the transcription factor, ToxT, which activates V. cholerae virulence genes including cholera toxin and the toxin co-regulated pilus. Using an ompU-sacB transcriptional fusion, toxR mutant alleles were identified that encode ToxR molecules defective for ompU promoter activation. Many toxR mutants defective for ompU activation affected residues involved in DNA binding. Mutants defective for ompU activation were also tested for activation of the toxT promoter. ToxR-F69A and ToxR-V71A, both in the α-loop of ToxR, were preferentially defective for ompU activation, with ToxR-V71A nearly completely defective. Six mutants from the ompU-sacB selection showed more dramatic defects in toxT activation than ompU activation. All but one of the affected residues map to the wing domain of the winged helix-turn-helix of ToxR. Some ToxR mutants preferentially affecting toxT activation had partial DNA-binding defects, and one mutant, ToxR-P101L, had altered interactions with TcpP. These data suggest that while certain residues in the α-loop of ToxR are utilized to activate the ompU promoter, the wing domain of ToxR contributes to both promoter binding and ToxR/TcpP interaction facilitating toxT activation.


Assuntos
Adesinas Bacterianas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição/metabolismo , Vibrio cholerae/fisiologia , Adesinas Bacterianas/genética , Proteínas de Bactérias/genética , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Sequências Hélice-Volta-Hélice , Modelos Biológicos , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Conformação Proteica , Fatores de Transcrição/genética , Vibrio cholerae/genética
4.
Proc Natl Acad Sci U S A ; 104(8): 2933-8, 2007 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-17301240

RESUMO

Chlamydia trachomatis is a bacterial pathogen that infects the eyes and urogenital tract. Ocular infection by this organism is the leading cause of preventable blindness worldwide. The infection is also a leading cause of sexually transmitted disease in the United States. As obligate intracellular pathogens, chlamydiae have evolved sophisticated, yet undefined, mechanisms to maintain a favorable habitat for intracellular growth while avoiding harm to the host. We show here that chlamydiae have the ability to interfere with the NF-kappaB pathway of host inflammatory response. We found that Chlamydia infection did not promote IkappaBalpha degradation, a prerequisite for NF-kappaB nuclear translocation/activation, nor induce p65/RelA nuclear redistribution. Instead, it caused p65 cleavage into an N terminus-derived p40 fragment and a p22 of the C terminus. The activity was specific because no protein cleavage or degradation of NF-kappaB pathway components was detected. Moreover, murine p65 protein was resistant to cleavage by both human and mouse biovars. The chlamydial protein that selectively cleaved p65 was identified as a tail-specific protease (CT441). Importantly, expression of either this protease or the p40 cleavage product could block NF-kappaB activation. A hallmark of chlamydial STD is its asymptomatic nature, although inflammatory cellular response and chronic inflammation are among the underlying mechanisms. The data presented here demonstrate that chlamydiae have the ability to convert a regulatory molecule of host inflammatory response to a dominant negative inhibitor of the same pathway potentially to minimize inflammation.


Assuntos
Chlamydia trachomatis/metabolismo , Fator de Transcrição RelA/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Infecções por Chlamydia , Chlamydia trachomatis/crescimento & desenvolvimento , Células HeLa , Humanos , Proteínas I-kappa B/metabolismo , Corpos de Inclusão/metabolismo , Camundongos , Inibidor de NF-kappaB alfa , Células NIH 3T3 , Peptídeo Hidrolases/metabolismo , Processamento de Proteína Pós-Traducional , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...