Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Parasitol Res ; 123(6): 229, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819740

RESUMO

The intricate relationships between parasites and hosts encompass a wide range of levels, from molecular interactions to population dynamics. Parasites influence not only the physiological processes in the host organism, but also the entire ecosystem, affecting mortality of individuals, the number of offspring through parasitic castration, and matter and energy cycles. Understanding the molecular mechanisms that govern host-parasite relationships and their impact on host physiology and environment remains challenging. In this study, we analyzed how infection with Microphallus trematodes affects the metabolome of two Littorina snail species inhabiting different intertidal zone shore levels. We applied non-targeted GC-MS-based metabolomics to analyze biochemical shifts induced by trematode infection in a host organism. We have identified changes in energy, amino acid, sugar, and lipid metabolism. In particular, we observed intensified amino acid catabolism and nitrogenous catabolites (glutamine, urea) production. These changes primarily correlated with infection and interspecies differences of the hosts rather than shore level. The changes detected in the host metabolism indicate that other aspects of life may have been affected, both within the host organism and at a supra-organismal level. Therefore, we explored changes in microbiota composition, deviations in the host molluscs behavior, and acetylcholinesterase activity (ACE, an enzyme involved in neuromuscular transmission) in relation to infection. Infected snails displayed changes in their microbiome composition. Decreased ACE activity in snails was associated with reduced mobility, but whether it is associated with trematode infection remains unclear. The authors suggest a connection between the identified biochemical changes and the deformation of the shell of molluscs, changes in their behavior, and the associated microbiome. The role of parasitic systems formed by microphallid trematodes and Littorina snails in the nitrogen cycle at the ecosystem level is also assumed.


Assuntos
Interações Hospedeiro-Parasita , Caramujos , Trematódeos , Animais , Trematódeos/fisiologia , Trematódeos/metabolismo , Caramujos/parasitologia , Metaboloma , Metabolômica , Cromatografia Gasosa-Espectrometria de Massas
2.
J Morphol ; 284(10): e21635, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37708509

RESUMO

One of the most conspicuous traits of parasitic organisms is a well-developed reproductive system. In Rhizocephala ("Crustacea": Cirripedia) it is believed to be nested in the externa-a "reproductive part" located outside of the host. However, it is not clear how nutrients are transported to the externa. Several authors described a system of lacunae in the externa, and muscular contractions probably enable transport through these cavities. The aim of our study was to visualize (using microcomputed tomography and confocal laser scanning microscopy) and describe lacunar and muscular systems in the externa of Peltogasterella gracilis (fam. Peltogasterellidae). The lacunar system consists of "ventral" lacuna and several protrusions. The "ventral" lacuna is probably responsible for visceral mass nutrition, and mantle protrusions are associated with the mantle nutrition. The gross organization of the muscular system mostly corresponds to previous descriptions in other rhizocephalan species. Nonetheless, we observed several features of the externa morphology that had not been described before such as a muscular thickening in the proximal externa's part and a stalk plug disk. The muscular thickening might play a role of a propulsatory organ, helping to transport liquid through the lacunar system. The plug disk might fill the hole in the host's cuticle after the old externa drop off. The results allow us to make first assumptions on transport mechanisms in Rhizocephala.


Assuntos
Gastrópodes , Sistema Musculoesquelético , Animais , Microtomografia por Raio-X , Crustáceos , Genitália
3.
Evol Appl ; 16(2): 365-378, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36793697

RESUMO

Microbes can play a prominent role in the evolution of their hosts, facilitating adaptation to various environments and promoting ecological divergence. The Wave and Crab ecotypes of the intertidal snail Littorina saxatilis is an evolutionary model of rapid and repeated adaptation to environmental gradients. While patterns of genomic divergence of the Littorina ecotypes along the shore gradients have been extensively studied, their microbiomes have been so far overlooked. The aim of the present study is to start filling this gap by comparing gut microbiome composition of the Wave and Crab ecotypes using metabarcoding approach. Since Littorina snails are micro-grazers feeding on the intertidal biofilm, we also compare biofilm composition (i.e. typical snail diet) in the crab and wave habitats. In the results, we found that bacterial and eukaryotic biofilm composition varies between the typical habitats of the ecotypes. Further, the snail gut bacteriome was different from outer environments, being dominated by Gammaproteobacteria, Fusobacteria, Bacteroidia and Alphaproteobacteria. There were clear differences in the gut bacterial communities between the Crab and the Wave ecotypes as well as between the Wave ecotype snails from the low and high shores. These differences were both observed in the abundances and in the presence of different bacteria, as well as at different taxonomic level, from bacterial OTU's to families. Altogether, our first insights show that Littorina snails and their associated bacteria are a promising marine system to study co-evolution of the microbes and their hosts, which can help us to predict the future for wild species in the face of rapidly changing marine environments.

4.
PLoS One ; 16(12): e0260792, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34932575

RESUMO

Any multicellular organism during its life is involved in relatively stable interactions with microorganisms. The organism and its microbiome make up a holobiont, possessing a unique set of characteristics and evolving as a whole system. This study aimed to evaluate the degree of the conservativeness of microbiomes associated with intertidal gastropods. We studied the composition and the geographic and phylogenetic variability of the gut and body surface microbiomes of five closely related sympatric Littorina (Neritrema) spp. and a more distant species, L. littorea, from the sister subgenus Littorina (Littorina). Although snail-associated microbiomes included many lineages (207-603), they were dominated by a small number of OTUs of the genera Psychromonas, Vibrio, and Psychrilyobacter. The geographic variability was greater than the interspecific differences at the same collection site. While the microbiomes of the six Littorina spp. did not differ at the high taxonomic level, the OTU composition differed between groups of cryptic species and subgenera. A few species-specific OTUs were detected within the collection sites; notably, such OTUs never dominated microbiomes. We conclude that the composition of the high-rank taxa of the associated microbiome ("scaffolding enterotype") is more evolutionarily conserved than the composition of the low-rank individual OTUs, which may be site- and / or species-specific.


Assuntos
Bactérias/isolamento & purificação , Variação Genética , Microbiota , Caramujos/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Microbiologia Ambiental , Filogenia , RNA Ribossômico 16S/genética , Caramujos/classificação , Especificidade da Espécie
5.
Ecol Evol ; 11(16): 11134-11154, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34429908

RESUMO

Divergence of ecological niches in phylogenetically closely related species indicates the importance of ecology in speciation, especially for sympatric species are considered. Such ecological diversification provides an advantage of alleviating interspecies competition and promotes more efficient exploitation of environmental resources, thus being a basis for ecological speciation. We analyzed a group of closely related species from the subgenus Neritrema (genus Littorina, Caenogastropoda) from the gravel-bouldery shores. In two distant sites at the Barents and Norwegian Sea, we examined the patterns of snail distribution during low tide (quantitative sampling stratified by intertidal level, presence of macrophytes, macrophyte species, and position on them), shell shape and its variability (geometric morphometrics), and metabolic characteristics (metabolomic profiling). The studied species diversified microbiotopes, which imply an important role of ecological specification in the recent evolution of this group. The only exception to this trend was the species pair L. arcana / L. saxatilis, which is specifically discussed. The ecological divergence was accompanied by differences in shell shape and metabolomic characteristics. Significant differences were found between L. obtusata versus L. fabalis and L. saxatilis / L. arcana versus L. compressa both in shell morphology and in metabolomes. L. saxatilis demonstrated a clear variability depending on intertidal level which corresponds to a shift in conditions within the occupied microhabitat. Interestingly, the differences between L. arcana (inhabiting the upper intertidal level) and L. compressa (inhabiting the lower one) were analogous to those between the upper and lower fractions of L. saxatilis. No significant level-dependent changes were found between the upper and lower fractions of L. obtusata, most probably due to habitat amelioration by fucoid macroalgae. All these results are discussed in the contexts of the role of ecology in speciation, ecological niche dynamics and conservatism, and evolutionary history of the Neritrema species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...