Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Exp Hematol ; 115: 20-29, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36041657

RESUMO

The molecular mechanisms regulating key fate decisions of hematopoietic stem cells (HSCs) remain incompletely understood. Here, we targeted global shRNA libraries to primary human hematopoietic stem and progenitor cells (HSPCs) to screen for modifiers of self-renewal and differentiation, and identified metastasis-associated 1 (MTA1) as a negative regulator of human HSPC propagation in vitro. Knockdown of MTA1 by independent shRNAs in primary human cord blood (CB) HSPCs led to a cell expansion during culture and a relative accumulation of immature CD34+CD90+ cells with perturbed in vitro differentiation potential. Transplantation experiments in immunodeficient mice revealed a significant reduction in human chimerism in both blood and bone marrow from HSPCs with knockdown of MTA1, possibly caused by reduced maturation of blood cells. We further found that MTA1 associates with the nucleosome remodeling deacetylase (NuRD) complex in human HSPCs, and on knockdown of MTA1, we observed an increase in H3K27Ac marks coupled with a downregulation of genes linked to differentiation toward the erythroid lineage. Together, our findings identify MTA1 as a novel regulator of human HSPCs in vitro and in vivo with critical functions for differentiation commitment.


Assuntos
Sangue Fetal , Células-Tronco Hematopoéticas , Humanos , Camundongos , Animais , Interferência de RNA , Antígenos CD34 , Diferenciação Celular/genética , Proteínas Repressoras/genética , Transativadores/genética
2.
Genes Chromosomes Cancer ; 60(6): 410-417, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33368842

RESUMO

High hyperdiploid acute lymphoblastic leukemia (ALL) is one of the most common malignancies in children. The main driver event of this disease is a nonrandom aneuploidy consisting of gains of whole chromosomes but without overt evidence of chromosomal instability (CIN). Here, we investigated the frequency and severity of defective sister chromatid cohesion-a phenomenon related to CIN-in primary pediatric ALL. We found that a large proportion (86%) of hyperdiploid cases displayed aberrant cohesion, frequently severe, to compare with 49% of ETV6/RUNX1-positive ALL, which mostly displayed mild defects. In hyperdiploid ALL, cohesion defects were associated with increased chromosomal copy number heterogeneity, which could indicate increased CIN. Furthermore, cohesion defects correlated with RAD21 and NCAPG mRNA expression, suggesting a link to reduced cohesin and condensin levels in hyperdiploid ALL. Knockdown of RAD21 in an ALL cell line led to sister chromatid cohesion defects, aberrant mitoses, and increased heterogeneity in chromosomal copy numbers, similar to what was seen in primary hyperdiploid ALL. In summary, our study shows that aberrant sister chromatid cohesion is frequent but heterogeneous in pediatric high hyperdiploid ALL, ranging from mild to very severe defects, and possibly due to low cohesin or condensin levels. Cases with high levels of aberrant chromosome cohesion displayed increased chromosomal copy number heterogeneity, possibly indicative of increased CIN. These abnormalities may play a role in the clonal evolution of hyperdiploid pediatric ALL.


Assuntos
Cromátides/genética , Instabilidade Cromossômica , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Criança , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Ploidias , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Repressoras/genética , Variante 6 da Proteína do Fator de Translocação ETS
3.
Proc Natl Acad Sci U S A ; 117(35): 21267-21273, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817519

RESUMO

Introduction of exogenous genetic material into primary stem cells is essential for studying biological function and for clinical applications. Traditional delivery methods for nucleic acids, such as electroporation, have advanced the field, but have negative effects on stem cell function and viability. We introduce nanostraw-assisted transfection as an alternative method for RNA delivery to human hematopoietic stem and progenitor cells (HSPCs). Nanostraws are hollow alumina nanotubes that can be used to deliver biomolecules to living cells. We use nanostraws to target human primary HSPCs and show efficient delivery of mRNA, short interfering RNAs (siRNAs), DNA oligonucleotides, and dextrans of sizes ranging from 6 kDa to 2,000 kDa. Nanostraw-treated cells were fully functional and viable, with no impairment in their proliferative or colony-forming capacity, and showed similar long-term engraftment potential in vivo as untreated cells. Additionally, we found that gene expression of the cells was not perturbed by nanostraw treatment, while conventional electroporation changed the expression of more than 2,000 genes. Our results show that nanostraw-mediated transfection is a gentle alternative to established gene delivery methods, and uniquely suited for nonperturbative treatment of sensitive primary stem cells.


Assuntos
Técnicas de Transferência de Genes , Células-Tronco Hematopoéticas , Nanoestruturas , Animais , Transplante de Células-Tronco Hematopoéticas , Humanos , Camundongos , Microinjeções
4.
Blood ; 136(19): 2151-2161, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32582923

RESUMO

Culture conditions in which hematopoietic stem cells (HSCs) can be expanded for clinical benefit are highly sought after. Here, we report that inhibition of the epigenetic regulator lysine-specific histone demethylase 1A (LSD1) induces a rapid expansion of human cord blood-derived CD34+ cells and promotes in vitro propagation of long-term repopulating HSCs by preventing differentiation. The phenotype and molecular characteristics of cells treated with LSD1 inhibitors were highly similar to cells treated with UM171, an agent promoting expansion of HSCs through undefined mechanisms and currently being tested in clinical trials. Strikingly, we found that LSD1, as well as other members of the LSD1-containing chromatin remodeling complex CoREST, is rapidly polyubiquitinated and degraded upon UM171 treatment. CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 depletion of the CoREST core member, RCOR1, resulted in expansion of CD34+ cells similar to LSD1 inhibition and UM171. Taken together, LSD1 and CoREST restrict HSC expansion and are principal targets of UM171, forming a mechanistic basis for the HSC-promoting activity of UM171.


Assuntos
Diferenciação Celular , Proteínas Correpressoras/metabolismo , Sangue Fetal/citologia , Células-Tronco Hematopoéticas/citologia , Histona Desmetilases/antagonistas & inibidores , Indóis/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Pirimidinas/farmacologia , Antígenos CD34/metabolismo , Proliferação de Células , Proteínas Correpressoras/genética , Sangue Fetal/efeitos dos fármacos , Sangue Fetal/metabolismo , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Humanos , Proteínas do Tecido Nervoso/genética
5.
Blood Adv ; 3(4): 681-691, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808686

RESUMO

Identification of determinants of fate choices in hematopoietic stem cells (HSCs) is essential to improve the clinical use of HSCs and to enhance our understanding of the biology of normal and malignant hematopoiesis. Here, we show that high-mobility group AT hook 2 (HMGA2), a nonhistone chromosomal-binding protein, is highly and preferentially expressed in HSCs and in the most immature progenitor cell subset of fetal, neonatal, and adult human hematopoiesis. Knockdown of HMGA2 by short hairpin RNA impaired the long-term hematopoietic reconstitution of cord blood (CB)-derived CB CD34+ cells. Conversely, overexpression of HMGA2 in CB CD34+ cells led to overall enhanced reconstitution in serial transplantation assays accompanied by a skewing toward the myeloerythroid lineages. RNA-sequencing analysis showed that enforced HMGA2 expression in CD34+ cells induced gene-expression signatures associated with differentiation toward megakaryocyte-erythroid and myeloid lineages, as well as signatures associated with growth and survival, which at the protein level were coupled with strong activation of AKT. Taken together, our findings demonstrate a key role of HMGA2 in regulation of both proliferation and differentiation of human HSPCs.


Assuntos
Proteína HMGA2/genética , Hematopoese , Células-Tronco Hematopoéticas/citologia , Animais , Proliferação de Células , Células Cultivadas , Células Eritroides/citologia , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos SCID , Células Mieloides/citologia , Regulação para Cima
6.
J Pharm Biomed Anal ; 163: 9-16, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30273838

RESUMO

Modern portable and hand-held Raman spectrometers that recently have become widespread in drug quality screening have good reproducibility and are able to detect small concentrations of substances in mixtures of several components or distinguish compounds similar in structure and having minimal differences in spectrum with appropriate mathematical processing methods. Among other spectrum comparison approaches, the peak search at their location is the most important task of spectral imaging of the studied samples. In this work, the Raman spectra of liquid drugs involved in the governmental non-destructive quality screening program performed by 8 mobile laboratories equipped with Raman spectrometers with uncooled detector and a 532 nm laser were compared with reference sample spectra using the peak windows correlation (PWC) algorithm developed in this work by authors. The proposed method provides accurate identification, detection of composition changes, and presence of foreign components in drugs formulations even if their contribution to the overall signal is negligible. The spectral correlation method called hit-quality index (HQI) method conventionally used for such portable spectrometers was specified as comparative method.


Assuntos
Medicamentos Falsificados/análise , Contaminação de Medicamentos/prevenção & controle , Controle de Qualidade , Análise Espectral Raman/métodos , Algoritmos , Excipientes/análise , Lasers , Reprodutibilidade dos Testes , Razão Sinal-Ruído , Análise Espectral Raman/instrumentação
7.
Curr Opin Hematol ; 25(4): 259-265, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29697484

RESUMO

PURPOSE OF REVIEW: Disturbance of the delicate balance between self-renewal and differentiation in haematopoietic stem cells (HSCs) can lead to both leukaemia and bone marrow failure. The regulation of this balance in HSC biology has been intensely investigated in several model systems, and lately the importance of epigenetic modifications as well as the organization and architecture of chromatin has become increasingly recognized. In this review, we will focus on the role of the chromatin organizing protein complex cohesin in regulation of normal and malignant haematopoiesis. RECENT FINDINGS: Several functional studies in both mouse and human systems have implicated cohesin as a critical regulator of self-renewal and differentiation in HSCs. Together with the discovery of recurrent mutations of cohesin genes in myeloid malignancies, this points towards a direct role of perturbed cohesin function in leukemogenesis. SUMMARY: The work reviewed here provides new insights about the role of the cohesin complex and chromatin architecture in normal and malignant HSCs, and indicates how cohesin may be specifically targeted for therapeutic benefit in the future.


Assuntos
Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona , Hematopoese , Células-Tronco Hematopoéticas , Leucemia , Mutação , Proteínas de Neoplasias , Células-Tronco Neoplásicas , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Leucemia/genética , Leucemia/metabolismo , Leucemia/patologia , Camundongos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Coesinas
8.
Methods Mol Biol ; 1622: 29-50, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28674799

RESUMO

Identifying the genes and pathways that regulate self-renewal and differentiation in somatic stem cells is a central goal in stem cell and cancer biology. Here, we describe a method for RNA interference (RNAi)-based screens combined with next-generation sequencing (NGS) in primary human hematopoietic stem and progenitor cells (HSPCs). These cells are suitable targets for complex, selection-based screens using pooled lentiviral short hairpin RNA (shRNA) libraries. The screening approach presented in this chapter is a promising tool to dissect regulatory mechanisms in hematopoietic stem cells (HSCs) and somatic stem cells in general, and may be particularly useful to identify gene targets and modifiers that can be further exploited in strategies for ex vivo stem cell expansion.


Assuntos
Regulação da Expressão Gênica , Testes Genéticos , Células-Tronco Hematopoéticas/metabolismo , Interferência de RNA , Antígenos CD34/metabolismo , Técnicas de Cultura de Células , Separação Celular/métodos , Sangue Fetal/citologia , Biblioteca Gênica , Células-Tronco Hematopoéticas/citologia , Humanos , RNA Interferente Pequeno/genética , Reprodutibilidade dos Testes , Transdução Genética
9.
Radiat Prot Dosimetry ; 173(1-3): 145-150, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27885075

RESUMO

The suitability of portable nuclide inspectors for incorporation measurements were tested with three probes (LaBr3(Ce), NaI(Tl) and HPGe) differing in sensitive volume and energy resolution. The efficiencies for the measurement of whole-body and lung radionuclide burden were calibrated using a whole-body block phantom with traceable radionuclide sources of 60Co, 133Ba, 137Cs, 152Eu and 40K. A standing geometry was chosen as it allows rapid positioning of persons for the measurements. Decision and detection limits were determined for the unshielded detector in a normal laboratory radiation environment according to ISO 11929 for 134Cs, 137Cs and 60Co. The detection limits of all three probes were significantly higher compared to well-shielded dedicated whole-body monitors (HPGe and NaI(Tl)) using a sitting geometry. Nevertheless, lung and whole-body burdens derived from dose constraints for routine and emergency conditions could be measured with all three probes with a counting time of one minute.


Assuntos
Monitoramento de Radiação , Radioisótopos/análise , Humanos , Imagens de Fantasmas
10.
Cell Rep ; 14(12): 2988-3000, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26997282

RESUMO

To gain insights into the regulatory mechanisms of hematopoietic stem cells (HSCs), we employed a genome-wide RNAi screen in human cord-blood derived cells and identified candidate genes whose knockdown maintained the HSC phenotype during culture. A striking finding was the identification of members of the cohesin complex (STAG2, RAD21, STAG1, and SMC3) among the top 20 genes from the screen. Upon individual validation of these cohesin genes, we found that their knockdown led to an immediate expansion of cells with an HSC phenotype in vitro. A similar expansion was observed in vivo following transplantation to immunodeficient mice. Transcriptome analysis of cohesin-deficient CD34(+) cells showed an upregulation of HSC-specific genes, demonstrating an immediate shift toward a more stem-cell-like gene expression signature upon cohesin deficiency. Our findings implicate cohesin as a major regulator of HSCs and illustrate the power of global RNAi screens to identify modifiers of cell fate.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Genoma Humano , Interferência de RNA , Animais , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Proteínas Cromossômicas não Histona/metabolismo , Sangue Fetal/citologia , Perfilação da Expressão Gênica , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos NOD , Fenótipo , RNA Interferente Pequeno/metabolismo , Transplante Heterólogo , Coesinas
11.
Cell Stem Cell ; 18(4): 522-32, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26831518

RESUMO

During development, hematopoietic stem cells (HSCs) undergo a rapid expansion in the fetal liver (FL) before settling in the adult bone marrow. We recently reported that proliferating adult HSCs are vulnerable to ER stress caused by accumulation of mis-folded proteins. Here, we find that FL-HSCs, despite an increased protein synthesis rate and a requirement for protein folding, do not upregulate ER chaperones. Instead, bile acids (BAs), secreted from maternal and fetal liver, coordinate to serve as chemical chaperones. Taurocholic acid, the major BA in FL, supports growth of HSCs in vitro by inhibiting protein aggregation. In vivo, reducing BA levels leads to ER stress elevation and accumulation of aggregated proteins and significantly decreases the number of FL-HSCs. Taken together, these findings reveal that BA alleviation of ER stress is a mechanism required for HSC expansion during fetal hematopoiesis.


Assuntos
Ácidos e Sais Biliares/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Fígado/efeitos dos fármacos , Prenhez , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Animais , Retículo Endoplasmático/metabolismo , Feminino , Células-Tronco Hematopoéticas/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo/efeitos dos fármacos , Gravidez , Agregados Proteicos/efeitos dos fármacos
12.
Blood ; 125(12): 1890-900, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25645357

RESUMO

Polycomb repressive complex 2 (PRC2) plays a key role in hematopoietic stem and progenitor cell (HSPC) function. Analyses of mouse mutants harboring deletions of core components have implicated PRC2 in fine-tuning multiple pathways that instruct HSPC behavior, yet how PRC2 is targeted to specific genomic loci within HSPCs remains unknown. Here we use short hairpin RNA-mediated knockdown to survey the function of PRC2 accessory factors that were defined in embryonic stem cells (ESCs) by testing the competitive reconstitution capacity of transduced murine HSPCs. We find that, similar to the phenotype observed upon depletion of core subunit Suz12, depleting Jarid2 enhances the competitive transplantation capacity of both fetal and adult mouse HSPCs. Furthermore, we demonstrate that depletion of JARID2 enhances the in vitro expansion and in vivo reconstitution capacity of human HSPCs. Gene expression profiling revealed common Suz12 and Jarid2 target genes that are enriched for the H3K27me3 mark established by PRC2. These data implicate Jarid2 as an important component of PRC2 that has a central role in coordinating HSPC function.


Assuntos
Regulação Neoplásica da Expressão Gênica , Complexo Repressor Polycomb 2/metabolismo , Animais , Antígenos CD34/metabolismo , Linhagem da Célula , Perfilação da Expressão Gênica , Hematopoese , Células-Tronco Hematopoéticas/citologia , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Fígado/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Fenótipo , RNA Interferente Pequeno/metabolismo , Células-Tronco/citologia
13.
Blood ; 119(26): 6255-8, 2012 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-22555972

RESUMO

We report on a forward RNAi screen in primary human hematopoietic stem and progenitor cells, using pooled lentiviral shRNA libraries deconvoluted by next generation sequencing. We identify MAPK14/p38α as a modulator of ex vivo stem cell proliferation and show that pharmacologic inhibition of p38 dramatically enhances the stem cell activity of cultured umbilical cord blood derived hematopoietic cells. p38 inhibitors should thus be considered in strategies aiming at expanding stem cells for clinical benefit.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 14 Ativada por Mitógeno/fisiologia , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Animais , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Descoberta de Drogas , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Proteína Quinase 14 Ativada por Mitógeno/genética , Terapia de Alvo Molecular , Interferência de RNA/fisiologia , RNA Interferente Pequeno/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...