RESUMO
We used nicorandil, a K-ATP channel opener, to study the role of these channels in the amelioration of renal ischemia/reperfusion (I/R)-induced pancreatic injury, and the possible involvement of PI3K/Akt/mTOR signaling pathway. Forty-two male Wistar rats were included in this study, six were sacrificed for extraction of bone marrow mesenchymal stem cells (BM-MSCs) and conducting the in-vitro work, the others were included in vivo study and equally divided into six groups. Group 1 (sham control), but groups 2-6 were subjected to bilateral renal I/R: Group 2 (I/R); Group 3 (I/R-NC), treated with nicorandil; Group 4 (I/R-MSCs), treated with BM-MSCs; Group 5 (I/R-MSCC), treated with nicorandil-preconditioned BM-MSCs; Group 6 (I/R-NC-MSCC), treated with both systemic nicorandil and preconditioned BM-MSCC. Renal injury and subsequent pancreatic damage were detected in the I/R group by a significant increase in serum urea, creatinine, fasting glucose, and pancreatic enzymes. The pancreatic tissues showed a reduction in cellularity and a significant decrease in the expression of the cell survival pathway, PI3K/Akt/mTOR, in the I/R group compared to the control. Preconditioning MSCs with nicorandil significantly enhanced the proliferation assay and decreased their apoptotic markers. Indeed, combined systemic nicorandil and nicorandil-preconditioning maintained survival of MSC in the pancreatic tissue and amelioration of apoptotic markers and pancreatic TNF-α production. Histologically, all treated groups revealed better pancreatic architecture, and increased area % of anti-insulin antibody and CD31, which were all best observed in the NC-MSCC group. Thus, using K-ATP channel opener was efficient to enhance PI3K/Akt/mTOR expression levels (in vivo and in vitro).
RESUMO
Synchronized uterine receptivity with the time of implantation is crucial for pregnancy continuity. Vitamin D (VD) deficiency has been linked to the failure of implantation. Therefore, we tested the link between the Homeobox transcription factor-10/immunophilin FK506-binding protein 52 (HOXA-10/FKBP52) axis and the uterine receptivity in VD-deficient rats. The effect of VD supplementation at different doses was also investigated. Forty-eight pregnant rats were divided into six groups (eight/group); normal control rats fed with standard chow (control), control rats supplemented with VD (equivalent dose of 400 IU/day) (control-D400). VD-deficient group (DEF) and the three VD deficiency groups with VD supplementation were equivalent to 400, 4,000, and 10,000 IU/day (DEF-D400, DEF-D4000, and DEF-D10000, respectively). The expression levels of HOXA-10/FKBP52, progesterone level, and histological evaluation of decidualization using osteopontin (OSN) and progesterone receptor (PGR) were estimated. An assessment of the uterine contractility was conducted for all rats. This study showed the downregulation of HOXA-10/FKBP52 together with increased amplitude and frequency of the uterine contractility in the DEF group compared to control. VD dose-dependent supplementation restored progesterone/receptor competency, upregulated the expressional response of HOXA-10 and its downstream FKBP52, and improved uterine receptivity and endometrial decidualization at the time of implantation that was documented by increased area% of OSN and the number of implantation beads.