Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 12: 1393641, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974655

RESUMO

Amongst the range of bioprinting technologies currently available, bioprinting by material extrusion is gaining increasing popularity due to accessibility, low cost, and the absence of energy sources, such as lasers, which may significantly damage the cells. New applications of extrusion-based bioprinting are systematically emerging in the biomedical field in relation to tissue and organ fabrication. Extrusion-based bioprinting presents a series of specific challenges in relation to achievable resolutions, accuracy and speed. Resolution and accuracy in particular are of paramount importance for the realization of microstructures (for example, vascularization) within tissues and organs. Another major theme of research is cell survival and functional preservation, as extruded bioinks have cells subjected to considerable shear stresses as they travel through the extrusion apparatus. Here, an overview of the main available extrusion-based printing technologies and related families of bioprinting materials (bioinks) is provided. The main challenges related to achieving resolution and accuracy whilst assuring cell viability and function are discussed in relation to specific application contexts in the field of tissue and organ fabrication.

2.
Materials (Basel) ; 15(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35208008

RESUMO

The present research deals with the formation and dissociation of methane and carbon dioxide hydrates in a confined environment (small-size reactor) and in presence of a porous sediment of pure quartz impregnated with Ti23 particles. This research is part of a wider study aimed at verifying the possibility to use metallic powders, produced via gas-atomization for applications in additive manufacturing, as additives during the production/dissociation of gas hydrates. The porous medium was used to ensure the presence of Ti23 particles in the whole volume and not only in the lowest portion of the internal volume. For both the guest compounds considered, two Ti23 concentrations were explored, respectively, 8.68 and 26.04 wt%. Under the thermodynamic point of view, the dissociation process well approximated the phase equilibrium (defined with values collected from literature) for both compounds. In addition, the amount of gas trapped into hydrates, evaluated as a function of the initial amount of gas inserted inside the reactor, did not show relevant changes. Conversely, the presence of Ti23 was found to reduce the induction time for both components, thus allowing to define it as a kinetic promoter for the process. Such tendency was found to increase with the concentration.

3.
Materials (Basel) ; 14(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34501204

RESUMO

Hydrate formation and dissociation processes were carried out in the presence of a pure quartz porous medium impregnated with a metallic powder made with a CuSn12 alloy. Experiments were firstly made in the absence of that powder; then, different concentrations were added to the porous medium: 4.23 wt.%, 18.01 wt.%, and 30.66 wt.%. Then, the hydrate dissociation values were compared with those present in the literature. The porous medium was found to act as an inhibitor in the presence of carbon dioxide, while it did not alter methane hydrate, whose formation proceeded similarly to the ideal trend. The addition of CuSn12 promoted the process significantly. In particular, in concentrations of up to 18.01 wt.%, CO2 hydrate formed at milder conditions until it moved below the ideal equilibrium curve. For methane, the addition of 30.66 wt.% of powder significantly reduced the pressure required to form hydrate, but in every case, dissociation values remained below the ideal equilibrium curve.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...