Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
1.
Synth Syst Biotechnol ; 9(4): 834-841, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39113689

RESUMO

Coproporphyrin III (CP III), a natural porphyrin derivative, has extensive applications in the biomedical and material industries. S. cerevisiae has previously been engineered to highly accumulate the CP III precursor 5-aminolevulinic acid (ALA) through the C4 pathway. In this study, a combination of cytoplasmic metabolic engineering and mitochondrial compartmentalization was used to enhance CP III production in S. cerevisiae. By integrating pathway genes into the chromosome, the CP III titer gradually increased to 32.5 ± 0.5 mg/L in shake flask cultivation. Nevertheless, increasing the copy number of pathway genes did not consistently enhance CP III synthesis. Hence, the partial synthesis pathway was compartmentalized in mitochondria to evaluate its effectiveness in increasing CP III production. Subsequently, by superimposing the mitochondrial compartmentalization strategy on cytoplasmic metabolic engineered strains, the CP III titer was increased to 64.3 ± 1.9 mg/L. Furthermore, augmenting antioxidant pathway genes to reduce reactive oxygen species (ROS) levels effectively improved the growth of engineered strains, resulting in a further increase in the CP III titer to 82.9 ± 1.4 mg/L. Fed-batch fermentations in a 5 L bioreactor achieved a titer of 402.8 ± 9.3 mg/L for CP III. This study provides a new perspective on engineered yeast for the microbial production of porphyrins.

2.
Metab Eng ; 85: 46-60, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019249

RESUMO

Heme has attracted considerable attention due to its indispensable biological roles and applications in healthcare and artificial foods. The development and utilization of edible microorganisms instead of animals to produce heme is the most promising method to promote the large-scale industrial production and safe application of heme. However, the cytotoxicity of heme severely restricts its efficient synthesis by microorganisms, and the cytotoxic mechanism is not fully understood. In this study, the effect of heme toxicity on Saccharomyces cerevisiae was evaluated by enhancing its synthesis using metabolic engineering. The results showed that the accumulation of heme after the disruption of heme homeostasis caused serious impairments in cell growth and metabolism, as demonstrated by significantly poor growth, mitochondrial damage, cell deformations, and chapped cell surfaces, and these features which were further associated with substantially elevated reactive oxygen species (ROS) levels within the cell (mainly H2O2 and superoxide anion radicals). To improve cellular tolerance to heme, 5 rounds of laboratory evolution were performed, increasing heme production by 7.3-fold and 4.2-fold in terms of the titer (38.9 mg/L) and specific production capacity (1.4 mg/L/OD600), respectively. Based on comparative transcriptomic analyses, 32 genes were identified as candidates that can be modified to enhance heme production by more than 20% in S. cerevisiae. The combined overexpression of 5 genes (SPS22, REE1, PHO84, HEM4 and CLB2) was shown to be an optimal method to enhance heme production. Therefore, a strain with enhanced heme tolerance and ROS quenching ability (R5-M) was developed that could generate 380.5 mg/L heme with a productivity of 4.2 mg/L/h in fed-batch fermentation, with S. cerevisiae strains being the highest producers reported to date. These findings highlight the importance of improving heme tolerance for the microbial production of heme and provide a solution for efficient heme production by engineered yeasts.

4.
Front Pharmacol ; 15: 1348688, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948474

RESUMO

Purpose: To evaluate the cost-effectiveness of sotorasib versus docetaxel in non-small cell lung cancer (NSCLC) patients with KRASG12C mutation from the China and United States'social perspective. Materials and Methods: A Markov model that included three states (progression-free survival, post-progression survival, and death) was developed. Incremental cost-effectiveness ratio (ICER), quality-adjusted life-year (QALY), and incremental QALY were calculated for the two treatment strategies. One-way sensitivity analysis was used to investigate the factors that had a greater impact on the model results, and tornado diagrams were used to present the results. Probabilistic sensitivity analysis was performed with 1,000 Monte Carlo simulations. Assume distributions based on parameter types and randomly sample all parameter distributions each time., The results were presented as cost-effectiveness acceptable curves. Results: This economic evaluation of data from the CodeBreak 200 randomized clinical trial. In China, sotorasib generated 0.44 QAYL with a total cost of $84372.59. Compared with docetaxel, the ICER value of sotorasib was $102701.84/QALY, which was higher than willingness to pay (WTP), so sotorasib had no economic advantage. In the US, sotorasib obtained 0.35 QALY more than docetaxel, ICER was $15,976.50/QALY, which was more than 1 WTP but less than 3 WTP, indicating that the increased cost of sotorasib was acceptable. One-way sensitivity analysis showed that the probability of sotorasib having economic benefits gradually increased when the cost of follow-up examination was reduced in China. And there was no influence on the conclusions within the range of changes in China. When the willingness to pay (WTP) exceeds $102,500, the probability of sotorasib having cost effect increases from 0% to 49%. Conclusion: Sotorasib had a cost effect from the perspective in the United States. However, sotorasib had no cost effect from the perspective in China, and only when the WTP exceeds $102,500, the probability of sotorasib having cost effect increases from 0% to 49%.

6.
J Exp Bot ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39082751

RESUMO

Water-to-land transition is a hallmark of terrestrialization for land plants and requires molecular adaptation to resist water deficiency. Lineages- or species-specific genes are widespread across eukaryotes, and yet the majority of those are functionally unknown and not annotated. Recent studies have revealed that some of such genes could play a role in adapting to environmental stress responses. Here, we identified a novel gene PpBCG1 (Bryophyte Co-retained Gene 1) in the moss Physcomitrium patens that was responsive to dehydration and rehydration. Under de- and rehydration treatments, PpBCG1 was significantly co-expressed with the dehydrin-encoding gene PpDHNA. Microarray data revealed that PpBCG1 was highly expressed in tissues of spores, female organ archegonia, and mature sporophytes. In addition, the Ppbcg1 mutant showed reduced ability of dehydration tolerance, whose plants were accompanied by a relatively low level of chlorophyll content during recovery. Comprehensive transcriptomics uncovered a detailed set of regulatory processes that were affected by the PpBCG1 disruption. Moreover, experimental evidence showed that PpBCG1 might function in the antioxidant activity, abscisic acid (ABA) pathway, and intracellular calcium (Ca2+) homeostasis to resist desiccation. Together, our study provides insights into the roles of one bryophyte co-retained gene in the desiccation tolerance.

7.
Enzyme Microb Technol ; 180: 110480, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39067324

RESUMO

(S)-equol, the most influential metabolite of daidzein in vivo, has aroused great attention due to the excellent biological activities. Although existing studies have accomplished the construction of its heterologous synthetic pathway in the context of anaerobicity and inefficiency of natural strains, the low productivity of (S)-equol limits its industrial application. Here, rational design strategies based on decreasing the pocket steric hindrance and fine-tuning the pocket microenvironment to systematically redesign the binding pocket of enzyme were developed and processed to the rate-limiting enzyme dihydrodaidzein reductase in (S)-equol synthesis. After iterative combinatorial mutagenesis, an effective mutant S118G/T169A capable of significantly increasing (S)-equol yield was obtained. Computational analyses illustrated that the main reason of the increased activity relied on the decreased critical distance and more stable interacting conformation. Then, the reaction optimization was performed, and the recombinant Escherichia coli whole-cell biocatalyst harboring S118G/T169A enabled the efficient conversion of 2 mM daidzein to (S)-equol, achieving conversion rate of 84.5 %, which was 2.9 times higher than that of the parental strain expressing wide type dihydrodaidzein reductase. This study provides an effective idea and a feasible method for enzyme modification and whole-cell catalytic synthesis of (S)-equol, and will greatly accelerate the process of industrial production.

9.
Nat Biotechnol ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839873

RESUMO

Porphyrins and their derivatives find extensive applications in medicine, food, energy and materials. In this study, we produced porphyrin compounds by combining Rhodobacter sphaeroides as an efficient cell factory with enzymatic catalysis. Genome-wide CRISPRi-based screening in R. sphaeroides identifies hemN as a target for improved coproporphyrin III (CPIII) production, and exploiting phosphorylation of PrrA further improves the production of bioactive CPIII to 16.5 g L-1 by fed-batch fermentation. Subsequent screening and engineering high-activity metal chelatases and coproheme decarboxylase results in the synthesis of various metalloporphyrins, including heme and the anti-tumor agent zincphyrin. After pilot-scale fermentation (200 L) and setting up the purification process for CPIII (purity >95%), we scaled up the production of heme and zincphyrin through enzymatic catalysis in a 5-L bioreactor, with CPIII achieving respective enzyme conversion rates of 63% and 98% and yielding 10.8 g L-1 and 21.3 g L-1, respectively. Our strategy offers a solution for high-yield bioproduction of heme and other valuable porphyrins with substantial industrial and medical applications.

10.
Mol Cancer Ther ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940283

RESUMO

Delta-like ligand 3 (DLL3) is overexpressed in small-cell lung cancer (SCLC) and has been considered an attractive target for SCLC therapy. Rovalpituzumab tesirine (Rova-T) was the first DLL3-targeted antibody-drug conjugate (ADC) to enter clinical studies. However, serious adverse events limited progress in the treatment of SCLC with Rova-T. In this study, we developed a novel DLL-3-targeted ADC, FZ-AD005, by using DXd with potent cytotoxicity and a relatively better safety profile to maximize the therapeutic index. FZ-AD005 was generated by a novel anti-DLL3 antibody FZ-A038 and a valine-alanine (Val-Ala) dipeptide linker to conjugate DXd. Moreover, Fc-silencing technology was introduced in FZ-AD005 to avoid off-target toxicity mediated by FcγRs and showed negligible Fc-mediated effector functions in vitro. In preclinical evaluation, FZ-AD005 exhibited DLL3-specific binding and demonstrated efficient internalization, bystander killing, and excellent in vivo antitumor activities in cell line-derived xenografts (CDX) and patient-derived xenograft (PDX) models. FZ-AD005 was stable in circulation with acceptable pharmacokinetic profiles in cynomolgus monkeys. FZ-AD005 was well tolerated in rats and monkeys. The safety profile of FZ-AD005 was favorable and the highest non-severely toxic dose was 30 mg/kg in cynomolgus monkeys. In conclusion, FZ-AD005 has the potential to be a superior DLL3-targeted ADC with a wide therapeutic window and is expected to provide clinical benefits for the treatment of SCLC patients.

12.
EJHaem ; 5(3): 462-473, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38895088

RESUMO

Numerous clinical studies speculated the association between multiple myeloma (MM) and inflammatory diseases; however, there is limited validation of these claims via establishing a causal relationship and revealing the underlying mechanism. This exploratory study employed bidirectional Mendelian randomization (MR) analysis to investigate the causal relationships between MM and inflammatory diseases, including atherosclerosis, asthma, ankylosing spondylitis, Alzheimer's disease (AD), Parkinson's disease (PD), sarcoidosis, inflammatory bowel disease, nonalcoholic fatty liver disease, type II diabetes, and schizophrenia (SZ). Transcriptomic and genome-wide Bayesian colocalization analyses were further applied to reveal the underlying mechanism. A significant and previously unrecognized positive association was identified between genetic predisposition to MM and the risk of SZ. Two independent case reports showed that treatment-resistant psychosis is due to underlying MM and is resolved by treating MM. From our MR analyses, various statistical methods confirmed this association without detecting heterogeneity or pleiotropy effects. Transcriptomic analysis revealed shared inflammation-relevant pathways in MM and SZ patients, suggesting inflammation as a potential pathophysiological mediator of MM's causal effect on SZ. Bayesian colocalization analysis identified rs9273086, which maps to the protein-coding region of HLA-DRB1, as a common risk variant for both MM and SZ. Polymorphism of the HLA-DRB1 allele has been implicated in AD and PD, further highlighting the impact of our results. Additionally, we confirmed that interleukin-6 (IL-6) is a risk factor for SZ through secondary MR, reinforcing the role of neuroinflammation in SZ etiology. Overall, our findings showed that genetic predisposition to MM, HLA-DRB1 polymorphism, and enhanced IL-6 signaling are associated with the increased risk of SZ, providing evidence for a causal role for neuroinflammation in SZ etiology.

13.
J Med Biochem ; 43(2): 193-199, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38699691

RESUMO

Background: To explore the correlation between serum uric acid (SUA) and prognosis in patients with chronic heart failure (CHF) after revascularization. Methods: A total of 126 patients with CHF undergoing revascularization [coronary artery intervention (PCI) or coronary artery bypass grafting (CABG)] in the hospital were enrolled as CHF group between December 2021 and October 2022, while 126 healthy controls during the same period were enrolled as healthy control group. The levels of SUA, inflammatory factors and cardiac function in the two groups were detected. The correlation between SUA level and inflammatory factors, cardiac function levels was analyzed. All patients in CHF group were followed up for 6 months to observe prognosis. The differences in the above indexes among patients with different prognosis were compared. The risk factors of prognosis were analyzed by multivariate Logistic regression analysis, and their predictive value for prognosis was evaluated by ROC curves analysis.

14.
Phytochemistry ; 223: 114114, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38697240

RESUMO

Huperzia serrata, belonging to the Lycopodiaceae family, has been traditionally utilized for the management of treating rheumatic numbness, arthritic pain, dysmenorrhea, and contusions. This plant is a rich source of lycopodium alkaloids, some of which have demonstrated notable cholinesterase inhibitory activity. The objective of this study was to identify lycopodium alkaloids with cholinesterase inhibitory properties from H. serrata. The structures of these alkaloids were elucidated by HRESIMS, NMR (including a 1H-15N HMBC experiment), ECD methods and single-crystal X-ray diffraction. The inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) were assessed using a modified Ellman's method. Consequently, sixteen lycopodium alkaloids (1-16), including ten previously undescribed ones named huperradines A-G and huperradines I-K (1-7 and 9-11), along with one previously undescribed naturally occurring compound, huperradine H (8), were isolated from H. serrata. Among these, compounds 7 and 1 exhibited potent and moderate AChE inhibition, with IC50 values of 0.876 ± 0.039 µM and 13.125 ± 0.521 µM, respectively. Our results suggest that huperradine G (7) may be a promising lead compound for the development of new AChE inhibitors for Alzheimer's disease.


Assuntos
Acetilcolinesterase , Alcaloides , Butirilcolinesterase , Inibidores da Colinesterase , Huperzia , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/isolamento & purificação , Alcaloides/química , Alcaloides/farmacologia , Alcaloides/isolamento & purificação , Huperzia/química , Acetilcolinesterase/metabolismo , Acetilcolinesterase/efeitos dos fármacos , Butirilcolinesterase/metabolismo , Estrutura Molecular , Lycopodium/química , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga
15.
Clinics (Sao Paulo) ; 79: 100379, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38704877

RESUMO

BACKGROUND AND AIMS: The association of blood transfusion with an increase in medium- and short-term mortality in specific populations has been confirmed. However, the correlation between blood transfusion and long-term mortality in the general population remains unclear. This cohort study evaluated the correlation between blood transfusion and overall and cause-specific mortality in the general American adult population. METHODS: The authors utilized 10 sets of 2-year cycle data (1999-2018) from the National Health and Nutrition Examination Survey on the outcomes of adults who did and did not receive blood transfusions. Propensity score-matching (1:1) was performed based on age, sex, race, education level, marital status, poverty-income ratio, arteriosclerotic cardiovascular disease, cancer, anemia, hypertension, and diabetes status. After controlling for demographic characteristics and clinical risk factors, Cox regression analysis was performed to evaluate the correlation between blood transfusion and all-cause and cause-specific mortality. RESULTS: The study included 48,004 adult participants. The risk of all-cause mortality increased by 101 % with blood transfusion, and the risk of cardiovascular mortality increased by 165 %. After propensity score-matching, 6,116 pairs of cases were retained, and the risk of all-cause mortality increased by 84 % with blood transfusion, and the risk of cardiovascular mortality increased by 137 %. The sensitivity analysis results were robust. CONCLUSIONS: In the general American population, blood transfusion significantly impacts long-term all-cause and cardiovascular mortality and may be an unacknowledged risk factor for death. Thus, the effective management of blood transfusion in the general population may be beneficial.


Assuntos
Transfusão de Sangue , Doenças Cardiovasculares , Inquéritos Nutricionais , Pontuação de Propensão , Humanos , Masculino , Feminino , Doenças Cardiovasculares/mortalidade , Estados Unidos/epidemiologia , Pessoa de Meia-Idade , Adulto , Transfusão de Sangue/estatística & dados numéricos , Transfusão de Sangue/mortalidade , Causas de Morte , Fatores de Risco , Idoso , Estudos de Coortes
16.
Molecules ; 29(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38611859

RESUMO

A novel Lycopodium alkaloid, lycocasine A (1), and seven known Lycopodium alkaloids (2-8), were isolated from Lycopodiastrum casuarinoides. Their structures were determined through NMR, HRESIMS, and X-ray diffraction analysis. Compound 1 features an unprecedented 5/6/6 tricyclic skeleton, highlighted by a 5-aza-tricyclic[6,3,1,02,6]dodecane motif. In bioactivity assays, compound 1 demonstrated weak inhibitory activity against acid-sensing ion channel 1a.


Assuntos
Alcaloides , Lycopodiaceae , Lycopodium , Canais Iônicos Sensíveis a Ácido , Alcaloides/farmacologia , Azacitidina
17.
Expert Opin Drug Saf ; : 1-9, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38641999

RESUMO

BACKGROUND: Opioids are the most frequently used drugs to treat pain in cancer patients. However opioid analgesics can cause adverse effects and potential drug-drug interaction. RESEARCH DESIGN AND METHODS: This cross-sectional retrospective study analyzed pDDI in 1839 patients with opioid analgesics in a large comprehensive hospital in China from January 1 to 31 December 2022. Three drug interaction databases were used to screen for pDDI including Drugs (U.S.A.), Medscape (U.S.A.), and Drug Assistant of Dingxiangyuan (China). RESULTS: The prevalence of pDDIs among 1839 patients was around 41.27% of 759 patients, and 564 patients (74.31%) with pDDIs were diagnosed with tumor. Further, the total of 275 various pDDIs combinations were identified. The combination of oxycodone with morphine had the most frequent occurrence of 229 times, and its adverse effects mainly related to exacerbate central respiratory depression. While, gender, tumor, number of diagnoses, and the variety of opioid analgesics used were independent risk factors for pDDIs. CONCLUSIONS: Outpatients taking opioid analgesics had a higher incidence of pDDIs. As consequently, optimized monitoring and management of patients taking opioid analgesics is recommended in order to ensure patient medication safety.

18.
Ecotoxicol Environ Saf ; 275: 116285, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564866

RESUMO

Mounting evidence has shown that the gut microbiota plays a key role in human health. The homeostasis of the gut microbiota could be affected by many factors, including environmental chemicals. Aldicarb is a carbamate insecticide used to control a variety of insects and nematode pests in agriculture. Aldicarb is highly toxic and its wide existence has become a global public health concern. In our previous study, we have demonstrated that aldicarb disturbed the gut microbial community structure and composition. However, the impacts of aldicarb on gut microbiota-derived metabolites, bile acids, remain elusive. In present study, we performed targeted metabolomics analysis to explore the effects of aldicarb exposure on bile acids, as well as steroid hormones and oxylipins in the serum, feces and liver of C57BL/6 J mice. Our results showed that aldicarb exposure disturbed the level of various bile acids, steroid hormones and oxylipins in the serum and feces of C57BL/6 J mice. In the liver, the level of cortisol was decreased, meanwhile 15,16-dihydroxyoctadeca-9,12-dienoic acid was increased in aldicarb-treated mice. Metagenomic sequencing analysis showed that the relative abundance of a bile salt hydrolase, choloylglycine hydrolase (EC:3.5.1.24) and a sulfatase enzyme involved in steroid hormone metabolism, arylsulfatase, was significantly increased by aldicarb exposure. Furthermore, correlations were found between gut microbiota and various serum metabolites. The results from this study are helpful to improve the understanding of the impact of carbamate insecticides on host and microbial metabolism.


Assuntos
Aldicarb , Inseticidas , Humanos , Camundongos , Animais , Ácidos e Sais Biliares , Oxilipinas , Camundongos Endogâmicos C57BL , Hormônios , Homeostase
19.
Metabolites ; 14(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38668317

RESUMO

The wide spread of microplastics has fueled growing public health concern globally. Due to their porous structure and large surface area, microplastics can serve as carriers for other environmental pollutants, including heavy metals. Although the toxic effects of microplastics or heavy metals have been reported previously, investigations into the sex-differential health effects of combined exposure to microplastics and heavy metals are lacking. In the present study, the effects of polystyrene microplastics and lead(II) co-exposure on the gut microbiome, intestinal permeability, and fecal metabolome were examined in both male and female mice. Combined exposure of polystyrene microplastics and lead(II) increased intestinal permeability in both male and female mice. Sex-specific responses to the co-exposure were found in gut bacteria, fungi, microbial metabolic pathways, microbial genes encoding antibiotic resistance and virulence factors, as well as fecal metabolic profiles. In particular, Shannon and Simpson indices of gut bacteria were reduced by the co-exposure only in female mice. A total of 34 and 13 fecal metabolites were altered in the co-exposure group in female and male mice, respectively, among which only three metabolites were shared by both sexes. These sex-specific responses to the co-exposure need to be taken into consideration when investigating the combined toxic effects of microplastics and heavy metals on the gut microbiota.

20.
Kidney Int Rep ; 9(3): 671-685, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38481512

RESUMO

Introduction: Disruption of gut microbiota underpins some of the metabolic alterations observed in chronic kidney disease (CKD). Methods: In a nonrandomized, open-label, 3-phase pilot trial, with repeated measures within each phase, we examined the efficacy of oligofructose-enriched inulin (p-inulin) in changing the gut microbiome and their metabolic products in 15 patients with CKD. The stability of microbiome and metabolome was studied during the pretreatment phase (8 weeks), a p-inulin treatment phase (12 weeks), and a post treatment phase (8 weeks) of the study. Results: Study participants completed 373 of the 420 expected study visits (88.8%). Adherence to p-inulin was 83.4%. 16S rRNA sequencing was performed in 368 stool samples. A total of 1085 stool, urine, and plasma samples were subjected to untargeted metabolomic studies. p-inulin administration altered the composition of the gut microbiota significantly, with an increase in abundance of Bifidobacterium and Anaerostipes. Intersubject variations in microbiome and metabolome were larger than intrasubject variation, indicating the stability of the gut microbiome within each phase of the study. Overall metabolite compositions assessed by beta diversity in urine and stool metabolic profiles were significantly different across study phases. Several specific metabolites in stool, urine, and plasma were significant at false discovery rate (FDR) ≤ 0.1 over phase. Specifically, there was significant enrichment in microbial metabolites derived from saccharolysis. Conclusion: Results from our study highlight the stability of the gut microbiome and the expansive effect of p-inulin on microbiome and host cometabolism in patients with CKD. Findings from this study will enable rigorous design of microbiome-based intervention trials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...