Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
J Opt Soc Am A Opt Image Sci Vis ; 41(6): 1044-1058, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38856416

RESUMO

The performance analysis of a free space optical (FSO) communication system in the presence of random jamming is presented over a Málaga (M) distributed channel model with pointing errors and atmospheric attenuation. Firstly, the probability density function expressions of the transmission channel, signal-to-jamming ratio, and signal-to-noise ratio are derived. Then, considering the probability of the jammer and Gaussian white noise, the closed-form expressions for the ergodic channel capacity, outage probability, and average bit error rate are derived. Moreover, asymptotic expressions for the aforementioned performance metrics are also derived to ascertain the diversity gain of the system. Extensive Monte Carlo simulations are performed to demonstrate the credibility of this theoretical analysis. Results indicate that the adverse impact of random jamming is higher than that of Gaussian noise for the FSO communication system. Besides, this observation highlights the pulsating nature of the jamming effect, showcasing that within high signal-to-jamming ratio regions, a low probability jammer exerts the most significant impact on the FSO system.

2.
Opt Express ; 32(7): 11079-11091, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38570965

RESUMO

Freespace optical (FSO) communication in an outdoor setting is complicated by atmospheric turbulence (AT). A time-varying (TV) multiplexed orbital angular momentum (OAM) propagation model to consider AT under transverse-wind conditions is formulated for the first time, and optimized dynamic correction periods for various TV AT situations are found to improve the transmission efficiency. The TV nature of AT has until now been neglected from modeling of OAM propagation models, but it is shown to be important. First, according to the Taylor frozen-turbulence hypothesis, a series of AT phase screens influenced by transverse wind are introduced into the conventional angular-spectrum propagation analysis method to model both the temporal and spatial propagation characteristics of multiplexed OAM beams. Our model shows that while in weak TV AT, the power standard deviation of lower-order modes is usually smaller than that of higher-order modes, the phenomena in strong TV AT are qualitatively different. Moreover, after analyzing the effective time of each OAM phase correction, optimized dynamic correction periods for a dynamic feedback communication link are obtained. An optimized result shows that, under the moderate TV AT, both a system BER within the forward-error-correction limit and a low iterative computation volume with 6% of the real-time correction could be achieved with a correction period of 0.18 s. The research emphasizes the significance of establishing a TV propagation model for exploring the effect of TV AT on multiplexed OAM beams and proposing an optimized phase-correction mechanism to mitigate performance degradation caused by TV AT, ultimately enhancing overall transmission efficiency.

3.
Opt Express ; 32(7): 12118-12126, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38571044

RESUMO

Microresonators facilitate enhanced light-matter interactions within a limited space, showing great promise for nonlinear optics. Here, we demonstrate a high-quality (Q) factor Fabry-Perot microresonator (FPR) for second harmonic generation (SHG) on an x-cut thin film lithium niobate (TFLN) platform. The FPR exhibits Q factors of Qpump = 1.09 × 105 and QSH = 1.15 × 104 at the 1560 nm pump wavelength and 780 nm second harmonic wavelength, respectively. Under low pump power, a normalized SHG efficiency of 158.5 ± 18.5%/W is attained. We experimentally verify that increased temperatures mitigate photorefractive effects that degrade SHG performance. This work highlights the immense capabilities of one-dimensional planar optical waveguide resonators for efficient on-chip nonlinear wavelength conversion.

4.
Opt Express ; 31(22): 36736-36744, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-38017817

RESUMO

High-efficiency second harmonic generation (SHG) relying solely on intermodal dispersion engineering remains a challenge. Here, we realize highly efficient SHG using a double-waveguide coupled racetrack microring resonator on X-cut lithium niobate on insulator (LNOI), where both pump and second harmonic (SH) approach critical coupling. Through precise temperature tuning, simultaneous pump and SH resonance is attained in the resonator, dramatically enhancing SHG efficiency. With low pump power, a normalized conversion efficiency of 9972%/W is achieved. Moreover, the resonator provides a 25.73 dB enhancement in SHG efficiency compared to a 4 mm straight waveguide with identical phase matching in our experiment. This work enables efficient wavelength conversion and quantum state generation on integrated X-cut LNOI platforms.

5.
Opt Express ; 30(9): 15766-15776, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35473290

RESUMO

The ring resonator is a versatile and functional component in the silicon-based integrated optical circuit. Most of the previously reported ring resonators work in the single-mode case. With the rapid development of mode division multiplexing technology, a multimode ring resonator (MMRR) has been proposed and the usage beyond the limit of a conventional single mode ring resonator has been explored. However, the reported MMRRs are either large in size or low in quality factor. In this paper, we designed a compact silicon MMRR with a small bending radius of 15µm, in which the three lowest TE modes all have high Q-factors. For suppressing the mode loss and inter-mode crosstalk in MMRR, a multimode waveguide bend (MWB) with mode adiabatic evolution was designed based on transformation optics and waveguide shape optimization. The independent excitation of each order mode of the MMRR is realized by using bending directional coupler and asymmetric directional coupler. We successfully fabricated the device on a silicon-on-insulator (SOI) platform using simple one-step lithography. The measured loaded Q-factors of the three lowest TE modes are 5.9 × 104, 4.5 × 104, and 4.7 × 104, respectively.

7.
Opt Express ; 28(23): 35395-35412, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182986

RESUMO

The focusing apodized subwavelength grating coupler (F-ASGC) has advantages of high coupling efficiency, small footprint and simple fabrication process, which make it a popular component for chip-scale coupling and testing of integrated optical circuit. However, the design of F-ASGC based on effective medium theory lacks accuracy, causing the drawbacks of peak wavelength deviation and performance degradation. In this work, we propose a deterministic design method of F-ASGC. Our grating coupler is formed by assembling various subwavelength grating units according to their complex effective indexes. The complex effective indexes of these grating units are accurately obtained by the weak form calculation. Then combining with transformation optics, we strictly analyze the F-ASGC for the first time. The simulation results show that the deterministically designed F-ASGC has high coupling efficiency of -2.51 dB, 3 dB bandwidth of 51 nm, and accurate central wavelength of 1553.1 nm. And we also fabricated it on the commercial SOI wafer. The measured maximum efficiency is -3.10 dB, the 3 dB bandwidth is 55 nm, and the central wavelength is 1551.5 nm.

8.
Phys Rev Lett ; 124(15): 153903, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32357032

RESUMO

Exceptional points (EPs) are branch point singularities of self-intersecting Riemann sheets, and they can be observed in a non-Hermitian system with complex eigenvalues. It has been revealed recently that dynamically encircling EPs by adiabatically changing the parameters of a system composed of lossy optical waveguides could lead to asymmetric (input-output) mode transfer. However, the length of the waveguides had to be considerable to ensure adiabatic evolution. Here we demonstrate that the parameters can change adiabatically along a smaller encircling loop by utilizing moving EPs, leading to significant shortening of the structures compared to fixed EPs. Meanwhile, the mode transmittance is remarkably improved and the transfer efficiency persists at ∼90%. Moving EPs are very promising for applications such as highly integrated broadband optical switches and convertors operating at telecommunication wavelengths.

9.
Polymers (Basel) ; 12(3)2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164181

RESUMO

A 5-channel polymer/silica hybrid arrayed waveguide grating (AWG), fabricated through a simple and low-cost microfabrication process is proposed, which covers the entire O-band (1260-1360 nm) of the optical communication wavelength system. According to the simulation results, the insertion loss is lower than 4.7 dB and the crosstalk within 3-dB bandwidth is lower than ~-28 dB. The actual fiber-fiber insertion loss is lower than 14.0 dB, and the crosstalk of the 5 channels is less than -13.0 dB. The demonstrated AWG is ideally suitable for optical communications, but also has potential in the multi-channel sensors.

10.
RSC Adv ; 10(19): 11148-11155, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35495328

RESUMO

Waveguide amplifiers based on slot waveguide have enormous capacity due to their ability to confine light strongly to a narrow slot waveguide. NaYF4:Er3+ nanoparticles-polymeric methyl methacrylate covalently linked nanocomposites were synthesized and filled into the slot. The stability and the Er3+ concentration doped in this novel material were improved. The slot waveguide was designed accurately. The rigorous numerical method, full-vector finite difference method, was used to analyze the modal characteristics and optimize the slot combined with the maximum power confinement in the slot and the minimum effective mode area of the slot. A four-level spectroscopic model pumped at 1480 nm was presented. The rate equations and propagation equations were solved and the gain characteristics of the slot waveguide amplifier were numerically simulated. The primary parameters were optimized. A net gain of 5.78 dB was achieved when the signal power was 0.001 mW at 1530 nm, pump power was 20 mW, Er3+ concentration was 1.3 × 1027 m-3, and the waveguide length was 1.5 cm.

11.
Opt Express ; 26(23): 29784-29795, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30469937

RESUMO

We experimentally demonstrated DFB lasers containing an active distributed reflector that has the same waveguide core as the active section. Although without current injection, the distributed reflector will be optically pumped to near transparency by the laser itself, and therefore can provide relatively high reflection to the laser. The laser, fabricated with processing steps similar to standard DFB lasers, has achieved 10-mA threshold current, 0.38-mW/mA slope efficiency, above 55-dB side mode suppression ratio, and 24-GHz modulation bandwidth at 60-mA current injection. 28-Gb/s transmission over 10-km single-mode fibers with a power penalty of less-than 0.5 dB has been demonstrated as well.

12.
Opt Express ; 25(17): 20911-20922, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-29041767

RESUMO

High-sensitivity complex refractive index sensing is proposed and experimentally demonstrated, favoring with sharp Fano resonance at 1550 nm wavelength based on subwavelength grating waveguide (SWG) micro-ring resonator. The micro-ring is composed by trapezoidal silicon pillars with subwavelength period to enhance the light-analyte overlap and get high quality factor as well. One straight SWG waveguide is side coupled with the micro-ring, which is specially designed to produce partial Fabry-Perot (FP) effect. Due to the interaction of resonant state of micro-ring and partial FP effect in straight waveguide, a sharp asymmetrical Fano resonance is formed at 1550 nm wavelength. Benefit from the large light-analyte overlap of the SWG waveguide structure and the sharp asymmetrical Fano resonance in spectrum, high theoretical sensitivities of 366 nm/RIU and 9700/RIU can be realized for the real part (n) and the imaginary part (κ) of refractive index respectively. We also experimentally demonstrate the sensing for glucose solution concentrations, and high experimental sensitivity of 363nm/RIU is obtained for n, and for κ the experimental results are also in well agreement with the simulation results.

13.
Opt Express ; 24(10): 10590-8, 2016 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-27409881

RESUMO

Distributed feedback lasers comprised of a reflection section and an active section have been proposed for high direct-modulation bandwidth. The reflection section has the same core layer as the active section so butt-joint re-growth is avoided. Without current injection the reflection section will be pumped to near transparency by the emission from the laser itself so high reflection (> 0.75) can still be achieved as confirmed by the simulation. Therefore a short (150 µm) active section can be used, which enables a low threshold current (~5 mA) and a high direct modulation bandwidth (>30 GHz) as demonstrated by the simulation.

14.
Sci Rep ; 5: 10190, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25970855

RESUMO

On-chip photonic circuits of different specific functions are highly desirable and becoming significant demands in all-optical communication network. Especially, the function to control the transmission directions of the optical signals in integrated circuits is a fundamental research. Previous schemes, such as on-chip optical circulators, are mostly realized by Faraday effect which suffers from material incompatibilities between semiconductors and magneto-optical materials. Achieving highly functional circuits in which light circulates in a particular direction with satisfied performances are still difficult in pure silicon photonics platform. Here, we propose and experimentally demonstrate a three-port passive device supporting optical ordered-route transmission based on silicon thermo-optic effect for the first time. By injecting strong power from only one port, the light could transmit through the three ports in a strict order (1→2, 2→3, 3→1) while be blocked in the opposite order (1→3, 3→2, 2→1). The blocking extinction ratios and operation bandwidths have been investigated in this paper. Moreover, with compact size, economic fabrication process and great extensibility, this proposed photonic integrated circuit is competitive to be applied in on-chip all-optical information processing systems, such as path priority selector.

15.
Opt Express ; 23(9): 12161-73, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25969304

RESUMO

We propose and demonstrate an optical arbitrary waveform generator and high-order photonic differentiator based on a four-tap finite impulse response (FIR) silicon-on-insulator (SOI) on-chip circuit. Based on amplitude and phase modulation of each tap controlled by thermal heaters, we obtain several typical waveforms such as triangular waveform, sawtooth waveform, square waveform and Gaussian waveform, etc., assisted by an optical frequency comb injection. Unlike other proposed schemes, our scheme does not require a spectral disperser which is difficult to fabricate on chip with high resolution. In addition, we demonstrate first-, second- and third-order differentiators based on the optical pulse shaper. Our scheme can switch the differentiator patterns from first- to third-order freely. In addition, our scheme has distinct advantages of compactness, capability for integration with electronics.

16.
Opt Express ; 22(9): 11021-8, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24921800

RESUMO

An asymmetric directional coupler scheme for the efficient injection of light into slow light slot photonic crystal waveguide modes is proposed and investigated using finite-difference time-domain simulation. Coupling wavelengths can be flexibly controlled by the geometrical parameters of a side-coupled subwavelength corrugated strip waveguide. This approach leads to a ~1dB insertion loss level up to moderately high light group indices (nG≈30) in wavelength ranges of 5-10nm. This work brings new opportunities to inject light into the slow modes of slot photonic crystal waveguides for on-chip communications using hybrid silicon photonics or sensing based on hollow core waveguides.

17.
Sci Rep ; 4: 3960, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24492519

RESUMO

Optical differentiation and optical Hilbert transformation play important roles in communications, computing, information processing and signal analysis in optical domain offering huge bandwidth. Meanwhile, silicon-based photonic integrated circuit is one of the most promising candidates for all-optical signal processing due to its intrinsic advantages of low power consumption, compact footprint, ultra-high speed and compatibility with electronic integrated circuits. In this study, we analyze the interrelation between first-order optical differentiation and optical Hilbert transformation and then experimentally demonstrate a feasible integrated scheme which can simultaneously function as first-order optical differentiation and optical Hilbert transformation based on a single microdisk resonator. This finding may motivate the development of integrated optical signal processors.

18.
Opt Express ; 21(12): 14876-87, 2013 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-23787675

RESUMO

We theoretically investigate the possible increase of the second harmonic generation (SHG) efficiency in silicon compatible waveguides by considering an asymmetrical plasmonic slot waveguide geometry and a χ((2)) nonlinear polymer infiltrating the slot. The needed phase matching condition is satisfied between the fundamental waveguide mode at the fundamental frequency (FF) and second-order waveguide mode at the second harmonic frequency (SHF) by an appropriate design of the waveguide opto-geometrical parameters. The SHG signal generated in our starting waveguide is three orders of magnitude higher than those previously reported for a FF corresponding to λ = 1550 nm. Then, the SHG performance was further improved by increasing the asymmetry of the structure where nonlinear coupling coefficients as large as 292 psm(-1)W(-1/2) are predicted. The device length is shorter than 20 µm and the normalized SHG conversion efficiency comes up to more than 1 × 10(5) W(-1)cm(-2).


Assuntos
Desenho Assistido por Computador , Modelos Teóricos , Polímeros/química , Silício/química , Ressonância de Plasmônio de Superfície/instrumentação , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Espalhamento de Radiação
19.
Opt Express ; 21(6): 7014-24, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23546084

RESUMO

We propose and experimentally demonstrate the flexibility and versatility of photonic differentiators using a silicon-based Mach-Zehnder Interferometer (MZI) structure. Two differentiation schemes are investigated. In the first scheme, we demonstrate high-order photonic field differentiators using on-chip cascaded MZIs, including first-, second-, and third-order differentiators. For single Gaussian optical pulse injection, the average deviations of all differentiators are less than 6.5%. In the second scheme, we demonstrate multifunctional differentiators, including intensity differentiator and field differentiator, using an on-chip single MZI structure. These different differentiator forms rely on the relative shift between the probe wavelength and the MZI resonant notch. Our schemes show the advantages of compact footprint, flexible functions and versatile differentiation forms. For example, high order field differentiators can be used to generate complex temporal waveforms, such as high order Hermite-Gaussian waveforms. And intensity differentiators are useful for ultra-wideband pulse generation.


Assuntos
Interferometria/instrumentação , Fotometria/instrumentação , Silício/química , Desenho de Equipamento , Análise de Falha de Equipamento
20.
Opt Lett ; 38(5): 628-30, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23455246

RESUMO

We propose and experimentally demonstrate a high-order photonic differentiator using on-chip complementary metal oxide semiconductor-compatible cascaded microring resonators, including first-, second-, and third-order differentiators. All the microring resonator units have a radius of 150 µm and a free spectral range of 80 GHz. The microring resonator can implement the first-order derivative of the optical field near its critical coupling region. Hence higher-order differentiation can be obtained by cascading more microring units on a single chip. For the periodical Gaussian optical pulse injection, the average deviations of all differentiators are less than 6.2%. The differentiation of pseudo-random bit sequence signals at 5 Gbit/s is also demonstrated. Our scheme is a compact and low-power-consumption solution since the cascaded microring units are fabricated with compact size on the silicon-on-insulator substrate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA